scispace - formally typeset
Journal ArticleDOI

Heart rate monitoring and therapeutic devices: A wavelet transform based approach for the modeling and classification of congestive heart failure.

Ashish Kumar, +2 more
- 01 Aug 2018 - 
- Vol. 79, pp 239-250
Reads0
Chats0
TLDR
LZMA based ECG data compression technique is proposed, which achieves the highest signal to noise ratio, and lowest root mean square error, and is capable of distinguishing accurately between healthy, myocardial infarction, congestive heart failure and coronary artery disease patients.
Abstract
Heart rate monitoring and therapeutic devices include real-time sensing capabilities reflecting the state of the heart. Current circuitry can be interpreted as a cardiac electrical signal compression algorithm representing the time signal information into a single event description of the cardiac activity. It is observed that some detection techniques developed for ECG signal detection like artificial neural network, genetic algorithm, Hilbert transform, hidden Markov model are some sophisticated algorithms which provide suitable results but their implementation on a silicon chip is very complicated. Due to less complexity and high performance, wavelet transform based approaches are widely used. In this paper, after a thorough analysis of various wavelet transforms, it is found that Biorthogonal wavelet transform is best suited to detect ECG signal's QRS complex. The main steps involved in ECG detection process consist of de-noising and locating different ECG peaks using adaptive slope prediction thresholding. Furthermore, the significant challenges involved in the wireless transmission of ECG data are data conversion and power consumption. As medical regulatory boards demand a lossless compression technique, lossless compression technique with a high bit compression ratio is highly required. Furthermore, in this work, LZMA based ECG data compression technique is proposed. The proposed methodology achieves the highest signal to noise ratio, and lowest root mean square error. Also, the proposed ECG detection technique is capable of distinguishing accurately between healthy, myocardial infarction, congestive heart failure and coronary artery disease patients with a detection accuracy, sensitivity, specificity, and error of 99.92%, 99.94%, 99.92% and 0.0013, respectively. The use of LZMA data compression of ECG data achieves a high compression ratio of 18.84. The advantages and effectiveness of the proposed algorithm are verified by comparing with the existing methods.

read more

Citations
More filters
Journal ArticleDOI

Review of noise removal techniques in ECG signals

TL;DR: It is observed that Wavelet-VBE, EMD-MAF, GAN2, GSSSA, new MP-EKF, DLSR, and AKF are most suitable for additive white Gaussian noise removal and GAN1 is the best denoising option for composite noise removal.
Journal ArticleDOI

Computer-aided diagnosis of congestive heart failure using ECG signals - A review.

TL;DR: This work highlights the development of an ECG-based CAD diagnostic system that employs deep learning algorithms to automatically detect Congestive heart failure, and reviews existing CAD for automatic CHF diagnosis.
Journal ArticleDOI

Stationary wavelet transform based ECG signal denoising method.

TL;DR: Signal-to-noise ratio, percentage root-mean-square difference, and root mean square error are used to compare the ECG signal denoising performance and the experimental result showed that the proposed stationary wavelet transform based ECGDenoising technique outperformed the other ECG Denoising techniques as more ECGs signal components are preserved than other denoised algorithms.
Journal ArticleDOI

Design of wavelet transform based electrocardiogram monitoring system.

TL;DR: It is found in this work that the usage of modified biorthogonal wavelet transform increases the detection accuracy and CR of the proposed design, and the Wi-Fi-based wireless protocol is used for compressed data transmission.
Journal ArticleDOI

Adaptive periodic mode decomposition and its application in rolling bearing fault diagnosis

TL;DR: The analysis results of rolling bearing signals show that APMD has excellent ability to identify and extract PCs and is a valid method for rolling bearing fault diagnosis.
References
More filters
Journal ArticleDOI

A theory for multiresolution signal decomposition: the wavelet representation

TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Journal ArticleDOI

A Real-Time QRS Detection Algorithm

TL;DR: A real-time algorithm that reliably recognizes QRS complexes based upon digital analyses of slope, amplitude, and width of ECG signals and automatically adjusts thresholds and parameters periodically to adapt to such ECG changes as QRS morphology and heart rate.
Book

A Wavelet Tour of Signal Processing : The Sparse Way

TL;DR: The central concept of sparsity is explained and applied to signal compression, noise reduction, and inverse problems, while coverage is given to sparse representations in redundant dictionaries, super-resolution and compressive sensing applications.
Journal ArticleDOI

Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database

TL;DR: This work implemented and tested a final real-time QRS detection algorithm, using the optimized decision rule process, which has a sensitivity of 99.69 percent and positive predictivity of 98.77 percent when evaluated with the MIT/BIH arrhythmia database.
Journal ArticleDOI

A comparison of the noise sensitivity of nine QRS detection algorithms

TL;DR: The noise sensitivities of nine different QRS detection algorithms were measured for a normal, single-channel, lead-II, synthesized ECG corrupted with five different types of synthesized noise: electromyographic interference, 60-Hz power line interference, baseline drift due to respiration, abrupt baseline shift, and a composite noise constructed from all of the other noise types.
Related Papers (5)