scispace - formally typeset
Search or ask a question
Journal Article

Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change.

01 Jan 2014-Aspects of applied biology (Association of Applied Biologists)-Iss: 124
TL;DR: In this article, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight.
Abstract: To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future.
Citations
More filters
Journal ArticleDOI
11 Nov 2016-Science
TL;DR: The full range and scale of climate change effects on global biodiversity that have been observed in natural systems are described, and a set of core ecological processes that underpin ecosystem functioning and support services to people are identified.
Abstract: Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.

815 citations

Journal ArticleDOI
TL;DR: A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.
Abstract: Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.

299 citations

Journal ArticleDOI
TL;DR: A strengthened breeding system is needed, with freer international exchange of elite varieties, short breeding cycles, high selection intensity, wide-scale phenotyping, and accurate selection supported by genomic technology.

244 citations

Journal ArticleDOI
TL;DR: Although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing and suggests that more emphasis on heat tolerance is warranted in breeding programs.
Abstract: Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat.

219 citations

Journal ArticleDOI
TL;DR: It is reported that drought stress will remain a key driver of yield losses in wheat and maize across Europe, and benefits from CO2 will be limited in low-yielding years.
Abstract: Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.

207 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Journal ArticleDOI
12 Feb 2010-Science
TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

9,125 citations

01 Jan 2013
TL;DR: In this paper, a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions are presented, with an emphasis on physical science issues.
Abstract: Report summarizing climate change issues in 2013, with an emphasis on physical science. It includes a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions.

7,858 citations

Journal ArticleDOI
29 Jul 2011-Science
TL;DR: It was found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability.
Abstract: Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

3,231 citations

Journal ArticleDOI
TL;DR: Inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm are examined to more than double the yield potential of major crops.
Abstract: Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO2 concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.

1,399 citations