scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids

01 May 2007-International Journal of Heat and Mass Transfer (INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER)-Vol. 50, Iss: 9, pp 2002-2018
TL;DR: In this article, the authors investigated the behavior of nanofluids inside a two-sided lid-driven differentially heated square cavity to gain insight into convective recirculation and flow processes induced by a nano-fluid.
About: This article is published in International Journal of Heat and Mass Transfer.The article was published on 2007-05-01. It has received 1797 citations till now. The article focuses on the topics: Nanofluid & Heat transfer.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt.

1,565 citations

01 Jan 2011
TL;DR: In this paper, the non-similar solutions are presented which depend on the Magnetic parameter M respectively, the obtained equations have been solved by explicit finite difference method and temperature and concentration profiles are discussed for the different values of the above parameters with different time steps.
Abstract: Unsteady heat and mass flow of a nanofluid past a stretching sheet with thermal radiation in the presence of magnetic field is studied. To obtain non-similar equation, continuity, momentum, energy and concentration equations have been non-dimensionalised by usual transformation. The non-similar solutions are presented here which depends on the Magnetic parameter M respectively . The obtained equations have been solved by explicit finite difference method. The temperature and concentration profiles are discussed for the different values of the above parameters with different time steps.

956 citations

Journal ArticleDOI
TL;DR: In this article, a review of the fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows and potential applications of nanopharticles is presented.
Abstract: Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade. Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension. This second part of the review covers fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows and potential applications of nanofluids. Opportunities for future research are identified as well. Keywords: Nanofluids; Nanoparticles; Heat transfer; Thermal conductivity.

430 citations


Cites background from "Heat transfer augmentation in a two..."

  • ...Tiwari and Das (2007) numerically studied mixed convection in a two-sided lid-driven differentially...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the steady boundary-layer flow of a nanofluid past a moving semi-infinite flat plate in a uniform free stream is investigated, where the plate is assumed to move in the same or opposite directions to the free stream.

362 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review is conducted on the simultaneous application of nanofluids and porous media for heat transfer enhancement purposes in thermal systems with different structures, flow regimes, and boundary conditions.

333 citations


Cites background or methods from "Heat transfer augmentation in a two..."

  • ...After this date, the model has been known as Tiwari and Das model [72]....

    [...]

  • ...[27] M.A. Sheremet, T. Grosan, I. Pop, Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model, Transp....

    [...]

  • ...[3] S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, Wiley, New Jersey, USA, 2007....

    [...]

  • ...Tiwari and Das nanofluid model In a variety of studies on heat transfer of porous media and nanofluids, the effect of Brownian motion and thermophoresis have been neglected and instead of the Buongiorno’s model, other assumptions have been made to describe the thermal transport behavior of nanofluids....

    [...]

  • ...In 2007, Tiwari and Das [72] studied the mixed convection of nanofluids in a cavity with moving side walls....

    [...]

References
More filters
Book
01 Jan 1873
TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Abstract: Arguably the most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831–1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field. A fellow of Trinity College Cambridge, Maxwell became, in 1871, the first Cavendish Professor of Physics at Cambridge. His famous equations - a set of four partial differential equations that relate the electric and magnetic fields to their sources, charge density and current density - first appeared in fully developed form in his 1873 Treatise on Electricity and Magnetism. This two-volume textbook brought together all the experimental and theoretical advances in the field of electricity and magnetism known at the time, and provided a methodical and graduated introduction to electromagnetic theory. Volume 2 covers magnetism and electromagnetism, including the electromagnetic theory of light, the theory of magnetic action on light, and the electric theory of magnetism.

9,565 citations

Journal ArticleDOI
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

4,634 citations

Journal ArticleDOI
TL;DR: In this paper, a methode numerique par volume fini pour the resolution des equations de Navier-Stokes bidimensionnelles, incompressible, and stationnaires, en coordonnees generales curvilignes, is presented.
Abstract: Presentation d'une methode numerique par volume fini pour la resolution des equations de Navier-Stokes bidimensionnelles, incompressibles, et stationnaires, en coordonnees generales curvilignes Application de la methode aux ecoulements turbulents sur des profils avec et sans separation au bord de sortie posterieur Comparaison des calculs avec des donnees experimentales

4,356 citations

Journal ArticleDOI
TL;DR: The vorticity-stream function formulation of the two-dimensional incompressible NavierStokes equations is used to study the effectiveness of the coupled strongly implicit multigrid (CSI-MG) method in the determination of high-Re fine-mesh flow solutions.

4,018 citations

Journal ArticleDOI
TL;DR: In this paper, an expression for the viscosity of solutions and suspensions of finite concentration is derived by considering the effect of the addition of one solute-molecule to an existing solution, which is considered as a continuous medium.
Abstract: An expression for the viscosity of solutions and suspensions of finite concentration is derived by considering the effect of the addition of one solute‐molecule to an existing solution, which is considered as a continuous medium.

3,724 citations