scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting

TL;DR: In this article, the influence of heat treatment on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L (SS316L) produced via selective laser melting (SLM) was investigated.
Abstract: The influence of heat treatment on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L (SS316L) produced via selective laser melting (SLM) was investigated. The fabricated SLM samples were subjected to two different heat treatments: a typical furnace-type heat treatment conducted at 1100 °C for 0.5 h and hot isostatic pressing performed at 1100 °C and 100 MPa for 1.5 h. High-density SLM samples with low porosities were obtained by increasing the laser power and decreasing the scan speed. The heat treatments of the fabricated SLM samples induced the removal of porosity, cellular microstructure, and dense dislocation structures with a slight increase in grain size. In terms of mechanical properties, the fabricated SLM samples exhibited similar hardness and tensile strength properties to those of the conventional SS316L, while a significantly lower elongation was evident. The heat treatments of the fabricated SLM samples improved elongation, while the surface hardness and tensile strength decreased owing to microstructural evolution. During the pin-on-disk test, the conventional SS316L and fabricated SLM sample exhibited similar wear resistance values, which decreased after the heat treatments of the fabricated SLM samples owing to the heat treatment-induced surface softening.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the effects of porosity on tensile properties, fatigue life, impact and fracture toughness, creep response, and wear behavior of laser powder bed fusion (LPBF) alloys are reviewed.
Abstract: Abstract Laser powder bed fusion (LPBF) is an emerging additive manufacturing technique that is currently adopted by a number of industries for its ability to directly fabricate complex near-net-shaped components with minimal material wastage. Two major limitations of LPBF, however, are that the process inherently produces components containing some amount of porosity and that fabricated components tend to suffer from poor repeatability. While recent advances have allowed the porosity level to be reduced to a minimum, consistent porosity-free fabrication remains elusive. Therefore, it is important to understand how porosity affects mechanical properties in alloys fabricated this way in order to inform the safe design and application of components. To this aim, this article will review recent literature on the effects of porosity on tensile properties, fatigue life, impact and fracture toughness, creep response, and wear behavior. As the number of alloys that can be fabricated by this technology continues to grow, this overview will mainly focus on four alloys that are commonly fabricated by LPBF—Ti-6Al-4 V, Inconel 718, AISI 316L, and AlSi10Mg.

32 citations

Journal ArticleDOI
TL;DR: In this article, four different metal L-PBF printers were used to produce 316L tensile testing samples using the same processing parameters and metal powder supplied from a single batch from the same supplier.
Abstract: Despite the recent progress in additive manufacturing (AM) process and technology, challenges in the repeatability and reproducibility of AM parts still hinders the adoption of this technique in many industries. This is particularly difficult when a part is qualified on a particular part on a certain machine using optimised parameters. If a manufacturer wishes to expand production to multiple machines, the ability to translate these optimised parameters to different machines much be understood. In this study, four different metal L-PBF printers were used to produce 316L tensile testing samples using the same processing parameters and metal powder supplied from a single batch from the same supplier. In addition to the analysis of the correlation between the input parameters and the output measures, this study reports that despite the same set process parameters, there is significant variations were found in the mechanical performance and properties of the AM samples produced on the different L-PBF metal additive manufacturing machines. For the range of the input processing parameters and the resulting input volumetric energy density applied of 21–37 J/mm3, values of (4–42)%, (200–716) MPa, and (52–214) GPa were obtained for the elongation, ultimate tensile strength and elastic modulus on additively manufactured 316L samples respectively.

30 citations

Journal ArticleDOI
TL;DR: The influence of post-AM heat treatment on microstructure, mechanical properties, and corrosion behavior of the major categories of AM metals including steel, Ni-based superalloys, Al alloys, Ti alloys and high entropy alloys is discussed in this paper .

21 citations

Journal ArticleDOI
TL;DR: In this article, the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of additive manufacturing (AM) SS316L, such as tensile strength, hardness, and effect of porosity, along with the microstructure evolution is also discussed.
Abstract: Additive manufacturing (AM) is one of the recently studied research areas, due to its ability to eliminate different subtractive manufacturing limitations, such as difficultly in fabricating complex parts, material wastage, and numbers of sequential operations. Laser-powder bed fusion (L-PBF) AM for SS316L is known for complex part production due to layer-by-layer deposition and is extensively used in the aerospace, automobile, and medical sectors. The process parameter selection is crucial for deciding the overall quality of the SS316L build component with L-PBF AM. This review critically elaborates the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of AM SS316L, such as tensile strength, hardness, and the effect of porosity, along with the microstructure evolution. The effect of other AM parameters, such as the build orientation, pre-heating temperature, and particle size, on the build properties is also discussed. The scope of this review also concerns the challenges in practical applications of AM SS316L. Hence, the residual stress formation, their influence on the mechanical properties and corrosion behavior of the AM build part for bio implant application is also considered. This review involves a detailed comparison of properties achievable with different AM techniques and various post-processing techniques, such as heat treatment and grain refinement effects on properties. This review would help in selecting suitable process parameters for various human body implants and many different applications. This study would also help to better understand the effect of each process parameter of PBF-AM on the SS316L build part quality.

20 citations

Journal ArticleDOI
TL;DR: In this article , the authors analyzed the mechanical behavior of 316L SS tensile specimens produced by Selective Laser Melting (SLM) with different build orientations (0°, 45° and 90°) and thicknesses (0.5, 0.75, 1 mm).
Abstract: Additive Layer Manufacturing (ALM) processes like Selective Laser Melting (SLM) enable the conception of complex designs with a high precision and equal or enhanced mechanical properties compared to Conventionally Manufactured (CM) structures. Nevertheless, this process, which consists in melting metallic powders layer by layer with a laser beam, greatly influences the microstructure and therefore the mechanical properties. While some studies have considered the effects of the thickness and/or the building direction of 316L Stainless Steel (SS) specimens produced by SLM on the quasi-static mechanical behavior, the strain rate effect for crash or impact applications on these two parameters has not been fully investigated. To complete the actual knowledge, the present work proposes to analyze the mechanical behavior of 316L SS tensile specimens produced by SLM with different build orientations (0°, 45° and 90°) and thicknesses (0.5, 0.75, 1 mm) and submitted to dynamic loadings at various strain rates up to 103 s−1. In addition, the microstructure and the fracture surfaces are analyzed to give a more detailed comprehension of the mechanical tests. It results that the SLM 316L SS achieves better Yield Stress (YS), similar Ultimate Tensile Stress (UTS) and equal or lower failure strain compared to the CM material. This is mainly a result of microstructure refinement. Anisotropy is observed at the macroscopic level with higher tensile stress and lower failure strain for horizontal specimens, which is explained by the different shapes, orientation and size of the grains at the microscopic level. The mechanical properties greatly decrease as the thickness reduces from 1 to 0.5 mm, by 14% for the YS and 16% for the UTS for a quasi-static loading. A minimum thickness of 0.75 mm is advised to at least recover the mechanical properties of the CM 316L SS. A positive strain rate sensitivity, higher than the CM material, is observed for all configurations, with the exception of 0.5 mm thickness. For strain rates ranging from to 10−3 to 103 s−1, there is an increase of 20% of the UTS. The material anisotropy is not affected by the strain rate sensitivity whereas the latter increases with the thickness.

7 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.

2,837 citations

Journal ArticleDOI
TL;DR: In this article, the development of the microstructure of the Ti-6Al-4V alloy processed by selective laser melting (SLM) was studied by light optical microscopy.

2,201 citations

Journal ArticleDOI
TL;DR: Selective laser melting (SLM) is a particular rapid prototyping, 3D printing, or additive manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders as mentioned in this paper.
Abstract: Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following a...

1,455 citations