scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Helical magnetorotational instability in magnetized Taylor-Couette flow.

07 Nov 2006-Physical Review E (American Physical Society)-Vol. 74, Iss: 5, pp 056302
TL;DR: It is shown that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis, and features of HMRI that make it less attractive for experiments and for resistive astrophysical disks are reported.
Abstract: Hollerbach and Ruediger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this 'helical' MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only), and that it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for instability even inmore » finite cylinders.« less
Citations
More filters
Journal ArticleDOI
TL;DR: This paper describes the observation of the HMRI in an improved Taylor-Couette setup with the Ekman pumping significantly reduced by using split end caps, and concludes that the observed HMRI represents a self-sustained global instability rather than a noise-Sustained convective one.
Abstract: The magnetorotational instability (MRI) is thought to play a key role in the formation of stars and black holes by sustaining the turbulence in hydrodynamically stable Keplerian accretion disks. In previous experiments the MRI was observed in a liquid metal Taylor-Couette flow at moderate Reynolds numbers by applying a helical magnetic field. The observation of this helical MRI (HMRI) was interfered with a significant Ekman pumping driven by solid end caps that confined the instability only to a part of the Taylor-Couette cell. This paper describes the observation of the HMRI in an improved Taylor-Couette setup with the Ekman pumping significantly reduced by using split end caps. The HMRI, which now spreads over the whole height of the cell, appears much sharper and in better agreement with numerical predictions. By analyzing various parameter dependencies we conclude that the observed HMRI represents a self-sustained global instability rather than a noise-sustained convective one.

106 citations

Journal ArticleDOI
TL;DR: The results of a liquid metal Taylor-Couette experiment are reported that shows the occurrence of an azimuthal MRI in the expected range of Hartmann numbers.
Abstract: The azimuthal version of the magnetorotational instability (MRI) is a nonaxisymmetric instability of a hydrodynamically stable differentially rotating flow under the influence of a purely or predominantly azimuthal magnetic field. It may be of considerable importance for destabilizing accretion disks, and plays a central role in the concept of the MRI dynamo. We report the results of a liquid metal Taylor-Couette experiment that shows the occurrence of an azimuthal MRI in the expected range of Hartmann numbers.

93 citations

Journal ArticleDOI
TL;DR: The magnetorotational instability (MRI) plays a key role in the formation of stars and black holes, by enabling outward angular momentum transport in accretion discs as discussed by the authors, and the use of combined axial and azimuthal magnetic fields allows the investigation of this effect in liquid metal flows at moderate Reynolds and Hartmann numbers.
Abstract: The magnetorotational instability (MRI) plays a key role in the formation of stars and black holes, by enabling outward angular momentum transport in accretion discs. The use of combined axial and azimuthal magnetic fields allows the investigation of this effect in liquid metal flows at moderate Reynolds and Hartmann numbers. A variety of experimental results is presented showing evidence for the occurrence of the MRI in a Taylor?Couette flow using the liquid metal alloy GaInSn.

73 citations

Journal ArticleDOI
TL;DR: A review of the history of dynamo and MRI related experiments is delineated in this article, and some directions of future work are discussed. But it is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via magnetorotational instability.
Abstract: It is widely known that cosmic magnetic fields, i.e. the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamically stable flow was obtained in the "Potsdam Rossendorf Magnetic Instability Experiment" (PROMISE). In this review, the history of dynamo and MRI related experiments is delineated, and some directions of future work are discussed.

59 citations

Journal ArticleDOI
TL;DR: In this article, a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence is performed.
Abstract: We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, helical and azimuthal version of the magnetorotational instability (MRI), as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the case of small magnetic Prandtl numbers which applies e.g. to liquid-metal experiments but also to the colder parts of accretion disks. We show that the inductionless versions of MRI that were previously thought to be restricted to comparatively steep rotation profiles extend well to the Keplerian case if only the azimuthal field slightly deviates from its current-free (in the fluid) profile. We find an explicit criterion separating the pure azimuthal inductionless MRI from the regime where this instability is mixed with the Tayler instability. We further demonstrate that for particular parameter configurations the azimuthal MRI originates as a result of a dissipation-induced instability of Chandrasekhar’s equipartition solution of ideal magnetohydrodynamics.

58 citations


Cites background from "Helical magnetorotational instabili..."

  • ...Interestingly, Liu et al. (2006) found also a second threshold of the Rossby number, which we call the upper Liu limit (ULL), at RoULL = 2(1+ √ 2) ≈ +4.828....

    [...]

  • ...On the other hand, HMRI was identified by Liu et al. (2006) as a weakly destabilized inertial oscillation, quite in contrast to the SMRI which represents a destabilized slow magneto-Coriolis wave....

    [...]

  • ...Very soon, however, the enthusiasm about this new inductionless version of MRI cooled down when Liu et al. (2006) showed that HMRI would only work for comparably steep rotation profiles....

    [...]

  • ...(7.15) A particular case of equation (7.15) at Rb = −1 yields the result of Liu et al. (2006), reproduced also by Kirillov & Stefani (2011) and Priede (2011)....

    [...]

References
More filters
Book
01 Jan 1964
TL;DR: In this article, the Poincare-Bendixson theory is used to explain the existence of linear differential equations and the use of Implicity Function and fixed point Theorems.
Abstract: Foreword to the Classics Edition Preface to the First Edition Preface to the Second Edition Errata I: Preliminaries II: Existence III: Differential In qualities and Uniqueness IV: Linear Differential Equations V: Dependence on Initial Conditions and Parameters VI: Total and Partial Differential Equations VII: The Poincare-Bendixson Theory VIII: Plane Stationary Points IX: Invariant Manifolds and Linearizations X: Perturbed Linear Systems XI: Linear Second Order Equations XII: Use of Implicity Function and Fixed Point Theorems XIII: Dichotomies for Solutions of Linear Equations XIV: Miscellany on Monotomy Hints for Exercises References Index.

9,036 citations

Book
01 Jan 2004
TL;DR: The fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ODEs was published by as discussed by the authors, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience.
Abstract: This handbook is the fourth volume in a series of volumes devoted to self contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. It covers a variety of problems in ordinary differential equations. It provides pure mathematical and real world applications. It is written for mathematicians and scientists of many related fields.

7,749 citations

Book
01 Jan 1958

5,552 citations

Journal ArticleDOI
TL;DR: In this article, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field.
Abstract: A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

4,265 citations

Book
01 Jan 1927

3,281 citations