scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions.

16 Apr 2021-Vol. 11, Iss: 4, pp 589
TL;DR: In this paper, the authors present a review of HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Abstract: Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Citations
More filters
Journal ArticleDOI
TL;DR: Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease.
Abstract: The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.

35 citations

Journal ArticleDOI
10 Oct 2022-Oxygen
TL;DR: This review focuses on the basic concepts of OS, highlighting the production of reactive oxygen and nitrogen species (RONS) derived from internal and external sources and the last elimination, and includes the cellular antioxidant system regulation and their ability to decrease OS.
Abstract: Oxidative stress (OS) has greatly interested the research community in understanding damaging processes occurring in cells. OS is triggered by an imbalance between reactive oxygen species (ROS) production and their elimination by the antioxidant system; however, ROS function as second messengers under physiological conditions. ROS are produced from endogenous and exogenous sources. Endogenous sources involve mitochondria, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), oxidases (NOXs), endoplasmic reticulum (ER), xanthine oxidases (XO), endothelial nitric oxide synthase (eNOs), and others. In contrast, exogenous ROS might be generated through ultraviolet (UV) light, ionizing radiation (IR), contaminants, and heavy metals, among others. It can damage DNA, lipids, and proteins if OS is not controlled. To avoid oxidative damage, antioxidant systems are activated. In the present review, we focus on the basic concepts of OS, highlighting the production of reactive oxygen and nitrogen species (RONS) derived from internal and external sources and the last elimination. Moreover, we include the cellular antioxidant system regulation and their ability to decrease OS. External antioxidants are also proposed as alternatives to ameliorate OS. Finally, we review diseases involving OS and their mechanisms.

24 citations

Journal ArticleDOI
TL;DR: Molecular and physiologic aspects of iron and heme metabolism are discussed, focusing on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years.
Abstract: An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

21 citations

Journal ArticleDOI
TL;DR: Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta as mentioned in this paper.
Abstract: Parkinson's disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress have been implicated in the pathogenesis of PD. Genetic and environmental factors can produce oxidative stress which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrate activation of multiple protective genes, including Heme oxygenase-1(HO-1), through which protects cells from oxidative stress.Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported different bioactive compounds were shown to be able to activate Nrf2/ARE can ameliorate PD-associated neurotoxin, both in animal models as well as in tissue culture.In this review, we briefly overview the sources of oxidative stress and the association between oxidative stress and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway, and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggest that pharmacological modulation of Nrf2/HO-1 signalling pathway by bioactive compounds as a therapeutic target of PD.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the role of Nrf2 in cancer and COVID-19, two widespread diseases that represent a cause of major concern today, has been discussed and a review describes the molecular aspects of NRF2 signalling in both pathological situations and the most recent findings about the advantages of NNF2 inhibition or activation as possible strategies for cancer and CoVID-9 treatment respectively.
Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known transcription factor best recognised as one of the main regulators of the oxidative stress response. Beyond playing a crucial role in cell defence by transactivating cytoprotective genes encoding antioxidant and detoxifying enzymes, Nrf2 is also implicated in a wide network regulating anti-inflammatory response and metabolic reprogramming. Such a broad spectrum of actions renders the factor a key regulator of cell fate and a strategic player in the control of cell transformation and response to viral infections. The Nrf2 protective roles in normal cells account for its anti-tumour and anti-viral functions. However, Nrf2 overstimulation often occurs in tumour cells and a complex correlation of Nrf2 with cancer initiation and progression has been widely described. Therefore, if on one hand, Nrf2 has a dual role in cancer, on the other hand, the factor seems to display a univocal function in preventing inflammation and cytokine storm that occur under viral infections, specifically in coronavirus disease 19 (COVID-19). In such a variegate context, the present review aims to dissect the roles of Nrf2 in both cancer and COVID-19, two widespread diseases that represent a cause of major concern today. In particular, the review describes the molecular aspects of Nrf2 signalling in both pathological situations and the most recent findings about the advantages of Nrf2 inhibition or activation as possible strategies for cancer and COVID-19 treatment respectively.

12 citations

References
More filters
Journal ArticleDOI
25 May 2012-Cell
TL;DR: This paper identified the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes.

7,192 citations

Journal ArticleDOI
TL;DR: It is argued that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
Abstract: Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.

4,369 citations

Journal ArticleDOI
TL;DR: Estimates can be used to more fully understand the redox biochemistry that results from oxidative stress, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.

4,274 citations

Journal ArticleDOI
16 Jan 2014-Cell
TL;DR: Targeted metabolomic profiling and chemoproteomics revealed that GPX4 is an essential regulator of ferroptotic cancer cell death and sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPx4-regulated ferroPTosis.

3,457 citations

Journal ArticleDOI
27 Feb 1987-Science
TL;DR: The data support the idea of a "beneficial" role for bilirubin as a physiological, chain-breaking antioxidant.
Abstract: Bilirubin, the end product of heme catabolism in mammals, is generally regarded as a potentially cytotoxic, lipid-soluble waste product that needs to be excreted. However, it is here that bilirubin, at micromolar concentrations in vitro, efficiently scavenges peroxyl radicals generated chemically in either homogeneous solution or multilamellar liposomes. The antioxidant activity of bilirubin increases as the experimental concentration of oxygen is decreased from 20% (that of normal air) to 2% (physiologically relevant concentration). Furthermore, under 2% oxygen, in liposomes, bilirubin suppresses the oxidation more than alpha-tocopherol, which is regarded as the best antioxidant of lipid peroxidation. The data support the idea of a "beneficial" role for bilirubin as a physiological, chain-breaking antioxidant.

3,299 citations