scispace - formally typeset
Open accessJournal ArticleDOI: 10.1073/PNAS.2016271118

Heritability of individualized cortical network topography.

02 Mar 2021-Proceedings of the National Academy of Sciences of the United States of America (Proceedings of the National Academy of Sciences)-Vol. 118, Iss: 9
Abstract: Human cortex is patterned by a complex and interdigitated web of large-scale functional networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial topography of cortical networks across individuals. While spatial network organization emerges across development, is stable over time, and is predictive of behavior, it is not yet clear to what extent genetic factors underlie interindividual differences in network topography. Here, leveraging a nonlinear multidimensional estimation of heritability, we provide evidence that individual variability in the size and topographic organization of cortical networks are under genetic control. Using twin and family data from the Human Connectome Project (n = 1,023), we find increased variability and reduced heritability in the size of heteromodal association networks (h 2 : M = 0.34, SD = 0.070), relative to unimodal sensory/motor cortex (h 2 : M = 0.40, SD = 0.097). We then demonstrate that the spatial layout of cortical networks is influenced by genetics, using our multidimensional estimation of heritability (h 2 -multi; M = 0.14, SD = 0.015). However, topographic heritability did not differ between heteromodal and unimodal networks. Genetic factors had a regionally variable influence on brain organization, such that the heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal cortex. Taken together, these data are consistent with relaxed genetic control of association cortices relative to primary sensory/motor regions and have implications for understanding population-level variability in brain functioning, guiding both individualized prediction and the interpretation of analyses that integrate genetics and neuroimaging.

... read more

Topics: Heritability (50%)

19 results found

Open accessPosted ContentDOI: 10.1101/2021.03.12.435168
12 Mar 2021-bioRxiv
Abstract: Resting-state functional connectivity is typically modeled as the correlation structure of whole-brain regional activity. It is studied widely, both to gain insight into the brain’s intrinsic organization but also to develop markers sensitive to changes in an individual’s cognitive, clinical, and developmental state. Despite this, the origins and drivers of functional connectivity, especially at the level of densely sampled individuals, remain elusive. Here, we leverage novel methodology to decompose functional connectivity into its precise framewise contributions. Using two dense sampling datasets, we investigate the origins of individualized functional connectivity, focusing specifically on the role of brain network “events” – short-lived and peaked patterns of high-amplitude cofluctuations. Here, we develop a statistical test to identify events in empirical recordings. We show that the patterns of cofluctuation expressed during events are repeated across multiple scans of the same individual and represent idiosyncratic variants of template patterns that are expressed at the group level. Lastly, we propose a simple model of functional connectivity based on event cofluctuations, demonstrating that group-averaged cofluctuations are suboptimal for explaining participant-specific connectivity. Our work complements recent studies implicating brief instants of high-amplitude cofluctuations as the primary drivers of static, whole-brain functional connectivity. Our work also extends those studies, demonstrating that cofluctuations during events are individualized, positing a dynamic basis for functional connectivity.

... read more

8 Citations

Open accessJournal ArticleDOI: 10.1016/J.NEUROIMAGE.2021.118286
Ivan Alvarez1, Nonie J. Finlayson2, Shwe Ei2, Benjamin de Haas3  +3 moreInstitutions (4)
18 Jun 2021-NeuroImage
Abstract: How much of the functional organization of our visual system is inherited? Here we tested the heritability of retinotopic maps in human visual cortex using functional magnetic resonance imaging. We demonstrate that retinotopic organization shows a closer correspondence in monozygotic (MZ) compared to dizygotic (DZ) twin pairs, suggesting a partial genetic determination. Using population receptive field (pRF) analysis to examine the preferred spatial location and selectivity of these neuronal populations, we estimate a heritability around 10-20% for polar angle preferences and spatial selectivity, as quantified by pRF size, in extrastriate areas V2 and V3. Our findings are consistent with heritability in both the macroscopic arrangement of visual regions and stimulus tuning properties of visual cortex. This could constitute a neural substrate for variations in a range of perceptual effects, which themselves have been found to be at least partially genetically determined. These findings also add convergent evidence for the hypothesis that functional map topology is linked with cortical morphology.

... read more

Topics: Visual cortex (60%), Receptive field (52%), Functional magnetic resonance imaging (52%) ... show more

4 Citations

Open accessJournal ArticleDOI: 10.1038/S41467-021-25184-4
Abstract: White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors. The relationship between the human structural and functional connectome is still not well established. Here the authors show the interindividual variability that exists in regional coupling of structural and functional connectivity across the brain, and that this is heritable.

... read more

4 Citations

Journal ArticleDOI: 10.1016/J.TICS.2021.05.008
Abstract: fMRI has considerable potential as a translational tool for understanding risk, prioritizing interventions, and improving the treatment of brain disorders. However, recent studies have found that many of the most widely used fMRI measures have low reliability, undermining this potential. Here, we argue that many fMRI measures are unreliable because they were designed to identify group effects, not to precisely quantify individual differences. We then highlight four emerging strategies [extended aggregation, reliability modeling, multi-echo fMRI (ME-fMRI), and stimulus design] that build on established psychometric properties to generate more precise and reliable fMRI measures. By adopting such strategies to improve reliability, we are optimistic that fMRI can fulfill its potential as a clinical tool.

... read more

4 Citations

Open accessJournal ArticleDOI: 10.1016/J.NEUROIMAGE.2021.118570
08 Sep 2021-NeuroImage
Abstract: The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.

... read more

Topics: Connectome (59%), Human Connectome (56%)

4 Citations


85 results found

Journal ArticleDOI: 10.1002/MRM.1910340409
Abstract: An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.

... read more

7,814 Citations

Open accessJournal ArticleDOI: 10.1152/JN.00338.2011
B.T. Thomas Yeo1, Fenna M. Krienen1, Jorge Sepulcre1, Jorge Sepulcre2  +13 moreInstitutions (3)
Abstract: Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

... read more

Topics: Dynamic functional connectivity (67%), Visual cortex (54%), Task-positive network (52%) ... show more

5,274 Citations

Open accessJournal ArticleDOI: 10.1073/PNAS.0601417103
Abstract: Functional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in the absence of goal-directed neuronal action and external input, and that these slow fluctuations correspond to functionally relevant resting-state networks. Several studies on resting fMRI have been conducted, reporting an apparent similarity between the identified patterns. The spatial consistency of these resting patterns, however, has not yet been evaluated and quantified. In this study, we apply a data analysis approach called tensor probabilistic independent component analysis to resting-state fMRI data to find coherencies that are consistent across subjects and sessions. We characterize and quantify the consistency of these effects by using a bootstrapping approach, and we estimate the BOLD amplitude modulation as well as the voxel-wise cross-subject variation. The analysis found 10 patterns with potential functional relevance, consisting of regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the so-called default-mode network, each with BOLD signal changes up to 3%. In general, areas with a high mean percentage BOLD signal are consistent and show the least variation around the mean. These findings show that the baseline activity of the brain is consistent across subjects exhibiting significant temporal dynamics, with percentage BOLD signal change comparable with the signal changes found in task-related experiments.

... read more

Topics: Resting state fMRI (67%), Default mode network (57%), Brain mapping (53%) ... show more

3,771 Citations

Open accessJournal ArticleDOI: 10.1016/J.NEUROIMAGE.2013.05.041
15 Oct 2013-NeuroImage
Abstract: The Human Connectome Project consortium led by Washington University, University of Minnesota, and Oxford University is undertaking a systematic effort to map macroscopic human brain circuits and their relationship to behavior in a large population of healthy adults. This overview article focuses on progress made during the first half of the 5-year project in refining the methods for data acquisition and analysis. Preliminary analyses based on a finalized set of acquisition and preprocessing protocols demonstrate the exceptionally high quality of the data from each modality. The first quarterly release of imaging and behavioral data via the ConnectomeDB database demonstrates the commitment to making HCP datasets freely accessible. Altogether, the progress to date provides grounds for optimism that the HCP datasets and associated methods and software will become increasingly valuable resources for characterizing human brain connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

... read more

Topics: Human Connectome (57%), Human Connectome Project (57%), Connectome (56%)

3,196 Citations

Open accessJournal ArticleDOI: 10.1086/301844
Laura Almasy1, John Blangero1Institutions (1)
Abstract: Multipoint linkage analysis of quantitative-trait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint identity-by-descent (IBD) probability calculations. We extend the sib-pair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a chromosome for each relative pair. We have derived correlations in IBD sharing as a function of chromosomal distance for relative pairs in general pedigrees and provide a simple framework whereby these correlations can be easily obtained for any relative pair related by a single line of descent or by multiple independent lines of descent. Once calculated, the multipoint relative-pair IBDs can be utilized in variance-component linkage analysis, which considers the likelihood of the entire pedigree jointly. Examples are given that use simulated data, demonstrating both the accuracy of QTL localization and the increase in power provided by multipoint analysis with 5-, 10-, and 20-cM marker maps. The general pedigree variance component and IBD estimation methods have been implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package.

... read more

Topics: Identity by descent (56%), Linkage (software) (53%)

3,024 Citations

No. of citations received by the Paper in previous years
Network Information
Related Papers (5)
Heritability of individualized cortical network topography30 Jul 2020, bioRxiv

Kevin M. Anderson, Tian Ge +10 more

The minimal preprocessing pipelines for the Human Connectome Project.15 Oct 2013, NeuroImage

Matthew F. Glasser, Stamatios N. Sotiropoulos +10 more

The WU-Minn Human Connectome Project: An Overview15 Oct 2013, NeuroImage

David C. Van Essen, Stephen M. Smith +4 more