scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification

TL;DR: In this paper, the photovoltaic performance of dye-sensitized solar cells (DSSCs) was improved by adding n-hexyl chains to the thiophene groups.
Abstract: Novel organic dyes (MK dyes), which have a carbazole derivative as an electron donor and a cyanoacrylic acid moiety (═C(—C≡N)COOH) as an electron acceptor and an anchoring group, connected with n-hexyl-substituted oligothiophenes as a π-conjugated system, were designed and synthesized for application in dye-sensitized solar cells (DSSCs), which are one of the promising molecular photovoltaics. The photovoltaic performance of the DSSCs based on MK dyes markedly depends on the molecular structure of the dyes in terms of the number and position of n-hexyl chains and the number of thiophene moieties. Retardation of charge recombination caused by the existence of n-hexyl chains linked to the thiophene groups resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (Voc) and hence the solar-to-electric power conversion efficiency (η) of DSSCs was achieved upon addition of n-hexyl chains to the thiophene groups. In addition, the adsorption condition (amount of d...
Citations
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: Recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells are focused on.
Abstract: Dye-sensitized solar cells (DSSC) have attracted considerable attention in recent years as they offer the possibility of low-cost conversion of photovoltaic energy This Review focuses on recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells Special attention has been paid to the design principles of these dyes and on the effect of various electrolyte systems Cosensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device In addition, we report on inverted dyes for photocathodes, which constitutes a relatively new approach for the production of tandem cells Special consideration has been paid to the correlation between the molecular structure and physical properties to their performance in DSSCs

2,549 citations

Journal ArticleDOI
TL;DR: Dithieno[3,2-b:2′3′-d]thiophene-4,4-dioxides 1221 3.3.1.
Abstract: 3.2. Thienothiophenes 1216 3.2.1. Thieno[3,4-b]thiophene Analogues 1216 3.2.2. Thieno[3,2-b]thiophene Analogues 1217 3.2.3. Thieno[2,3-b]thiophene Analogues 1218 3.3. , ′-Bridged Bithiophenes 1219 3.3.1. Dithienothiophene (DTT) Analogues 1220 3.3.2. Dithieno[3,2-b:2′3′-d]thiophene-4,4-dioxides 1221 3.3.3. Dithienosilole (DTS) Analogues 1221 3.3.4. Cyclopentadithiophene (CPDT) Analogues 1221 3.3.5. Nitrogen and Phosphor Atom Bridged Bithiophenes 1222

1,224 citations

Journal ArticleDOI
TL;DR: This work reviews systematically the progress of porphyrins of varied kinds, and their derivatives, applied in PSSC with a focus on reports during 2007-2012 from the point of view of molecular design correlated with photovoltaic performance.
Abstract: Nature has chosen chlorophylls in plants as antennae to harvest light for the conversion of solar energy in complicated photosynthetic processes. Inspired by natural photosynthesis, scientists utilized artificial chlorophylls – the porphyrins – as efficient centres to harvest light for solar cells sensitized with a porphyrin (PSSC). After the first example appeared in 1993 of a porphyrin of type copper chlorophyll as a photosensitizer for PSSC that achieved a power conversion efficiency of 2.6%, no significant advance of PSSC was reported until 2005; beta-linked zinc porphyrins were then reported to show promising device performances with a benchmark efficiency of 7.1% reported in 2007. Meso-linked zinc porphyrin sensitizers in the first series with a push–pull framework appeared in 2009; the best cell performed comparably to that of a N3-based device, and a benchmark 11% was reported for a porphyrin sensitizer of this type in 2010. With a structural design involving long alkoxyl chains to envelop the porphyrin core to suppress the dye aggregation for a push–pull zinc porphyrin, the PSSC achieved a record 12.3% in 2011 with co-sensitization of an organic dye and a cobalt-based electrolyte. The best PSSC system exhibited a panchromatic feature for light harvesting covering the visible spectral region to 700 nm, giving opportunities to many other porphyrins, such as fused and dimeric porphyrins, with near-infrared absorption spectral features, together with the approach of molecular co-sensitization, to enhance the device performance of PSSC. According to this historical trend for the development of prospective porphyrin sensitizers used in PSSC, we review systematically the progress of porphyrins of varied kinds, and their derivatives, applied in PSSC with a focus on reports during 2007–2012 from the point of view of molecular design correlated with photovoltaic performance.

1,208 citations

Journal ArticleDOI
TL;DR: The cell performance of the arieslamine organic dyes are compared, providing a comprehensive overview of arylamineorganic dyes, demonstrating the advantages/disadvantages of each class, and pointing out the field that needs to reinforce the research direction in the further application of DSCs.
Abstract: Arylamine organic dyes with donor (D), π-bridge (π) and acceptor (A) moieties for dye-sensitized solar cells (DSCs) have received great attention in the last decade because of their high molar absorption coefficient, low cost and structural variety. In the early stages, the efficiency of DSCs with arylamine organic dyes with D–π–A character was far behind that of DSCs with ruthenium(II) complexes partly due to the lack of information about the relationship between the chemical structures and the photovoltaic performance. However, exciting progress has been recently made, and power conversion efficiencies over 10% were obtained for DSCs with arylamine organic dyes. It is thus that the recent research and development in the field of arylamine organic dyes employing an iodide/triiodide redox couple or polypyridyl cobalt redox shuttles as the electrolytes for either DSCs or solid-state DSCs has been summarized. The cell performance of the arylamine organic dyes are compared, providing a comprehensive overview of arylamine organic dyes, demonstrating the advantages/disadvantages of each class, and pointing out the field that needs to reinforce the research direction in the further application of DSCs.

970 citations

References
More filters
Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

Journal ArticleDOI
TL;DR: Cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes were prepared and characterized with respct to their absorption, luminescence, and redox behavior.
Abstract: cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes (X=Cl - , Br, I - , CN - , and SCN - ) were prepared and characterized with respct to their absorption, luminescence, and redox behavior. They act as efficient charge-transfer sensitizers for nanocrystalline TiO 2 films (thickness 8-12 μm) of very high internal surface area (roughness factor ca. 1000), prepared by sintering of 15-30-nm colloidal titania particles on a conducting glass support. The performance of cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) (1) was found to be outstanding and is unmatched by any other known sensitizer

5,785 citations

Journal ArticleDOI
TL;DR: A review with 156 refs on interfacial electron transfer reactions in colloidal semiconductor solns and thin films and their application for solar light energy conversion and photocatalytic water purifn is presented in this paper.
Abstract: A review with 156 refs. on interfacial electron transfer reactions in colloidal semiconductor solns. and thin films and their application for solar light energy conversion and photocatalytic water purifn. Some of the topics discussed include; optical and electronic properties of colloidal semiconductor particles, quantum size effects in the photoluminescence of colloidal semiconductors, light-induced charge sepn., dynamics of interfacial charge transfer processes, properties and prepn. of nanocryst. semiconductor electrodes, energetics and operations of the nanoporous solar cell.

5,065 citations

Journal ArticleDOI
TL;DR: In this paper, a review compiles positively and negatively solvatochromic compounds which have been used to establish empirical scales of solvent polarity by means of UV/vis/near-IR spectroscopic measurements in solution.
Abstract: This review compiles positively and negatively solvatochromic compounds which have been used to establish empirical scales of solvent polarity by means of UV/vis/near-IR spectroscopic measurements in solution-with particular emphasis on the E ~ ( 3 0 ) scale derived from negatively solvatochromic pyridinium N-phenolate betaine dyes. This requires a short discussion of the concept of solvent polarity and how empirical parameters of solvent polarity can be derived and understood in the framework of linear free-energy relationships. The preconditions for the occurrence of solvatochromism, and further requirements of solvatochromic compounds for them to be useful as solvent polarity indicators will be discussed. In addition to spectroscopically based single parameters of solvent polarity, multiparameter treatments of solvent effects by means of solvatochromic parameters will also be mentioned. The mutual interrelation between some of the more important W/vis/near-IR spectroscopically derived solvent scales, and their correlations with solvatochromic multiparameter equations will be exemplarily given.

4,512 citations

Journal ArticleDOI
TL;DR: The computed alignments of the molecular orbitals of the different complexes with the band edges of a model TiO(2) nanoparticle provide additional insights into the electronic factors governing the efficiency of dye-sensitized solar cell devices.
Abstract: We report a combined experimental and computational study of several ruthenium(II) sensitizers originated from the [Ru(dcbpyH2)2(NCS)2], N3, and [Ru(dcbpyH2)(tdbpy)(NCS)2], N621, (dcbpyH2 = 4,4‘-dicarboxy-2,2‘-bipyridine, tdbpy = 4,4‘-tridecyl-2,2‘-bipyridine) complexes. A purification procedure was developed to obtain pure N-bonded isomers of both types of sensitizers. The photovoltaic data of the purified N3 and N621 sensitizers adsorbed on TiO2 films in their monoprotonated and diprotonated state, exhibited remarkable power conversion efficiency at 1 sun, 11.18 and 9.57%, respectively. An extensive Density Functional Theory (DFT)−Time Dependent DFT study of these sensitizers in solution was performed, investigating the effect of protonation of the terminal carboxylic groups and of the counterions on the electronic structure and optical properties of the dyes. The calculated absorption spectra are in good agreement with the experiment, thus allowing a detailed assignment of the UV−vis spectral features ...

2,660 citations