scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction

01 Jan 2022-Energy Storage Materials (Elsevier)-Vol. 44, pp 145-155
TL;DR: In this paper, a 3D cross-linked rod-like structured Bi2Se3/CDs composites were designed for fast-kinetics lithium storage, and the existence of an interface Bi-O-C bond was shown to enhance the intrinsic sluggish kinetics and structural stability.
About: This article is published in Energy Storage Materials.The article was published on 2022-01-01. It has received 24 citations till now. The article focuses on the topics: Materials science & Anode.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the chemical process of local oxidation-partial reduction-deep coupling for stibnite reduction of carbon dots (CDs) is revealed by in-situ high-temperature X-ray diffraction.
Abstract: The chemical process of local oxidation-partial reduction-deep coupling for stibnite reduction of carbon dots (CDs) is revealed by in-situ high-temperature X-ray diffraction. Sb2S3@xCDs anode delivers high initial coulombic efficiency in lithium ion batteries (85.2%) and sodium ion batteries (82.9%), respectively. C-S bond influenced by oxygen-rich carbon matrix can restrain the conversion of sulfur to sulfite, well confirmed by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. CDs-induced Sb-O-C bond is proved to effectively regulate the interfacial electronic structure. The application of Sb2S3 with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency (ICE). In this work, natural stibnite modified by carbon dots (Sb2S3@xCDs) is elaborately designed with high ICE. Greatly, chemical processes of local oxidation-partial reduction-deep coupling for stibnite reduction of CDs are clearly demonstrated, confirmed with in situ high-temperature X-ray diffraction. More impressively, the ICE for lithium-ion batteries (LIBs) is enhanced to 85%, through the effect of oxygen-rich carbon matrix on C-S bonds which inhibit the conversion of sulfur to sulfite, well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. Not than less, it is found that Sb-O-C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation. As a result, the optimal sample delivers a tremendous reversible capacity of 660 mAh g-1 in LIBs at a high current rate of 5 A g-1. This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides, especially for improving the ICE.

24 citations

Journal ArticleDOI
TL;DR: In this article , the chemical process of local oxidation-partial reduction-deep coupling for stibnite reduction of carbon dots (CDs) is revealed by in-situ high-temperature X-ray diffraction.
Abstract: The chemical process of local oxidation-partial reduction-deep coupling for stibnite reduction of carbon dots (CDs) is revealed by in-situ high-temperature X-ray diffraction. Sb2S3@xCDs anode delivers high initial coulombic efficiency in lithium ion batteries (85.2%) and sodium ion batteries (82.9%), respectively. C-S bond influenced by oxygen-rich carbon matrix can restrain the conversion of sulfur to sulfite, well confirmed by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. CDs-induced Sb-O-C bond is proved to effectively regulate the interfacial electronic structure. The application of Sb2S3 with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency (ICE). In this work, natural stibnite modified by carbon dots (Sb2S3@xCDs) is elaborately designed with high ICE. Greatly, chemical processes of local oxidation-partial reduction-deep coupling for stibnite reduction of CDs are clearly demonstrated, confirmed with in situ high-temperature X-ray diffraction. More impressively, the ICE for lithium-ion batteries (LIBs) is enhanced to 85%, through the effect of oxygen-rich carbon matrix on C-S bonds which inhibit the conversion of sulfur to sulfite, well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. Not than less, it is found that Sb-O-C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation. As a result, the optimal sample delivers a tremendous reversible capacity of 660 mAh g-1 in LIBs at a high current rate of 5 A g-1. This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides, especially for improving the ICE.

20 citations

Journal ArticleDOI
TL;DR: In this article , a metal-organic framework with ultrathin two-dimensional nanosheet structures is fabricated by a simple bottom-up stirring method at room temperature and can be scaled up to high-throughput production.

15 citations

Journal ArticleDOI
01 Sep 2022-Small
TL;DR: In this article , a spindle-like structured Bi@N-doped carbon composite (SPB@NC) consisting of interconnected nano-Bi coated heteroatom doped hard carbon layer via an interesting in-situ carbon thermal reduction method is presented.
Abstract: Bismuth (Bi)-based materials have attracted great attention as anodes in potassium ion batteries (PIBs) for their high theoretical capacity and suitable voltage range. Herein, the authors report a unique spindle-like structured Bi@N-doped carbon composite (SPB@NC) consisting of interconnected nano-Bi coated heteroatom-doped hard carbon layer via an interesting in situ carbon thermal reduction method. The special interconnected Bi nanoparticles gradually form porous structure with ample inner voids for accommodating volume variations while the N-doped carbon layer not only keeps the electrode stable, but also contributes to rapid electron/ion transfer. As a result, such a robust framework endows SPB@NC fast potassium storage with outstanding capacity of 276.5 mAh g-1 at 30 A g-1 (i.e., 1 min for discharge/charge) and durable cycling performance of 299.3 mAh g-1 at 5 A g-1 after 2000 cycles. Notably, a full cell assembled with potassium vanadate cathode is promising for practical applications. A series of ex situ techniques reveals the in-depth potassium storage mechanism and kinetics reactions. This work illuminates helpful insights into Bi-based anodes for PIBs.

14 citations

Journal ArticleDOI
TL;DR: In this article , bimetallic transition metal selenide (CuSe/[email protected]) is constructed with modified band structure to boost the fast Na+ ions diffusion, which is beneficial to provide abundant active sites and regulate band structure.

10 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

57,691 citations

Journal ArticleDOI
TL;DR: The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.
Abstract: A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.

1,017 citations

Journal ArticleDOI
TL;DR: Three strategies for structural engineering of CDs are presented and analyzed, in terms of the tuning of size and crystallinity, and the methodologies for surface modification and heteroatom doping, with a focus on the relationship among the synthesis methods, structure and properties of the concerned CDs.
Abstract: The emergence of carbon dots (CDs) has opened up an exciting new field in the science and technology of carbon nanomaterials and has attracted increasing interest in recent years. Due to their diverse physicochemical properties and favourable attributes, such as quantum confinement effects and abundant surface defects, CDs and their derived hybrids have shown exciting and indispensable prospects in the energy conversion and storage fields. Considering the latest developments, in this review, we comprehensively summarize the classification and structure of CDs. Three strategies for structural engineering of CDs are presented and analyzed, in terms of the tuning of size and crystallinity, and the methodologies for surface modification and heteroatom doping, with a focus on the relationship among the synthesis methods, structure and properties of the concerned CDs. More importantly, the recent advances in energy-oriented applications of CDs, including photo- and electro-catalysis, light-emitting diodes, photovoltaic cells, lithium/sodium ion batteries and supercapacitors, will be systematically highlighted. Finally, we discuss and outline the remaining major challenges and opportunities for CDs in the future.

476 citations

Journal ArticleDOI
TL;DR: Electrochemical tests reveal that the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1, and good durability, which is superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions.
Abstract: Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are facing increasing demand as a result of their potential use in future energy-conversion systems. However, the development of HER electrocatalysts with Pt-like or even superior activity, in particular ones that can function under alkaline conditions, remains a significant challenge. Here, the synthesis of a novel carbon-loaded ruthenium nanoparticle electrocatalyst (Ru@CQDs) for the HER, using carbon quantum dots (CQDs), is reported. Electrochemical tests reveal that, even under extremely alkaline conditions (1 m KOH), the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1 , and good durability. Most importantly, it only requires an overpotential of 10 mV to achieve the current density of 10 mA cm-2 . Such catalytic characteristics are superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions. These findings open a new field for the application of CQDs and add to the growing family of metal@CQDs with high HER performance.

417 citations