scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hierarchical control of droop-controlled DC and AC microgrids — a general approach towards standardization

01 Nov 2009-Vol. 58, Iss: 1, pp 158-172
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The objective of this paper is to provide a review of distributed control and management strategies for the next generation power system in the context of microgrids and identifies challenges and opportunities ahead.
Abstract: The objective of this paper is to provide a review of distributed control and management strategies for the next generation power system in the context of microgrids. This paper also identifies future research directions. The next generation power system, also referred to as the smart grid, is distinct from the existing power system due to its extensive use of integrated communication, advanced components such as power electronics, sensing, and measurement, and advanced control technologies. At the same time, the need for increased number of small distributed and renewable energy resources can exceed the capabilities of an available computational resource. Therefore, the recent literature has seen a significant research effort on dividing the control task among different units, which gives rise to the development of several distributed techniques. This paper discusses features and characteristics of these techniques, and identifies challenges and opportunities ahead. The paper also discusses the relationship between distributed control and hierarchical control.

594 citations

Journal ArticleDOI
TL;DR: In this article, the adaptive/improved droop control, network-based control methods, and cost-based droop schemes are compared and summarized for active power sharing for islanded microgrids.
Abstract: Microgrids consist of multiple parallel-connected distributed generation (DG) units with coordinated control strategies, which are able to operate in both grid-connected and islanded modes Microgrids are attracting considerable attention since they can alleviate the stress of main transmission systems, reduce feeder losses, and improve system power quality When the islanded microgrids are concerned, it is important to maintain system stability and achieve load power sharing among the multiple parallel-connected DG units However, the poor active and reactive power sharing problems due to the influence of impedance mismatch of the DG feeders and the different ratings of the DG units are inevitable when the conventional droop control scheme is adopted Therefore, the adaptive/improved droop control, network-based control methods, and cost-based droop schemes are compared and summarized in this paper for active power sharing Moreover, nonlinear and unbalanced loads could further affect the reactive power sharing when regulating the active power, and it is difficult to share the reactive power accurately only by using the enhanced virtual impedance method Therefore, the hierarchical control strategies are utilized as supplements of the conventional droop controls and virtual impedance methods The improved hierarchical control approaches such as the algorithms based on graph theory, multi-agent system, the gain scheduling method, and predictive control have been proposed to achieve proper reactive power sharing for islanded microgrids and eliminate the effect of the communication delays on hierarchical control Finally, the future research trends on islanded microgrids are also discussed in this paper

593 citations


Cites background from "Hierarchical control of droop-contr..."

  • ...for active power sharing are inevitable in the conventional droop control [53]–[56], [80]–[85], [101]–[103]....

    [...]

  • ...based on the generator ratings when economical dispatching is introduced in hierarchical control [47], [53], [98]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a virtual impedance design and implementation approach for power electronics interfaced distributed generation (DG) units is presented, where the virtual impedances can be placed between interfacing converter outputs and the main grid.
Abstract: This paper presents a virtual impedance design and implementation approach for power electronics interfaced distributed generation (DG) units. To improve system stability and prevent power couplings, the virtual impedances can be placed between interfacing converter outputs and the main grid. However, optimal design of the impedance value, robust implementation of the virtual impedance, and proper utilization of the virtual impedance for DG performance enhancement are key for the virtual impedance concept. In this paper, flexible small-signal models of microgrids in different operation modes are developed first. Based on the developed microgrid models, the desired DG impedance range is determined considering the stability, transient response, and power flow performance of DG units. A robust virtual impedance implementation method is also presented, which can alleviate voltage distortion problems caused by harmonic loads compared to the effects of physical impedances. Furthermore, an adaptive impedance concept is proposed to further improve power control performances during the transient and grid faults. Simulation and experimental results are provided to validate the impedance design approach, the virtual impedance implementation method, and the proposed adaptive transient impedance control strategies.

543 citations


Cites methods from "Hierarchical control of droop-contr..."

  • ...microgrid [3]–[6], [8]–[11], [22], [27], [28]....

    [...]

  • ...In this control category, the frequency and voltage magnitude droop control is one of the most popular methods for real (P) and reactive (Q) power regulation [3], [4], [8]–[11], [22], [27], [28]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, restorations for both voltage and frequency in the droop-controlled inverter-based islanded microgrid (MG) are addressed and a consensus-based distributed frequency control is proposed for frequency restoration, subject to certain control input constraints.
Abstract: In this paper, restorations for both voltage and frequency in the droop-controlled inverter-based islanded microgrid (MG) are addressed. A distributed finite-time control approach is used in the voltage restoration which enables the voltages at all the distributed generations (DGs) to converge to the reference value in finite time, and thus, the voltage and frequency control design can be separated. Then, a consensus-based distributed frequency control is proposed for frequency restoration, subject to certain control input constraints. Our control strategies are implemented on the local DGs, and thus, no central controller is required in contrast to existing control schemes proposed so far. By allowing these controllers to communicate with their neighboring controllers, the proposed control strategy can restore both voltage and frequency to their respective reference values while having accurate real power sharing, under a sufficient local stability condition established. An islanded MG test system consisting of four DGs is built in MATLAB to illustrate our design approach, and the results validate our proposed control strategy.

538 citations


Cites background or methods from "Hierarchical control of droop-contr..."

  • ...In a general ac MG system, each DG consists of a prime dc source, a dc/ac inverter, an LCL filter, and an RL output connector [9], as shown in Fig....

    [...]

  • ...Recently, in order to standardize its operation and functionality, hierarchical control for islanded MG systems has been proposed [9], [10]....

    [...]

Journal ArticleDOI
TL;DR: A decentralized power sharing method is proposed in order to eliminate the need for any communication between DGs or microgrids and the performance of the proposed power control strategy is validated for different operating conditions, using simulation studies in the PSCAD/EMTDC software environment.
Abstract: Hybrid AC/DC microgrids have been planned for the better interconnection of different distributed generation systems (DG) to the power grid, and exploiting the prominent features of both ac and dc microgrids. Connecting these microgrids requires an interlinking AC/DC converter (IC) with a proper power management and control strategy. During the islanding operation of the hybrid AC/DC microgrid, the IC is intended to take the role of supplier to one microgrid and at the same time acts as a load to the other microgrid and the power management system should be able to share the power demand between the existing AC and dc sources in both microgrids. This paper considers the power flow control and management issues amongst multiple sources dispersed throughout both ac and dc microgrids. The paper proposes a decentralized power sharing method in order to eliminate the need for any communication between DGs or microgrids. This hybrid microgrid architecture allows different ac or dc loads and sources to be flexibly located in order to decrease the required power conversions stages and hence the system cost and efficiency. The performance of the proposed power control strategy is validated for different operating conditions, using simulation studies in the PSCAD/EMTDC software environment.

508 citations


Cites methods from "Hierarchical control of droop-contr..."

  • ...In [16] hierarchical control method that is applied in ac power systems for power dispatching is modified for controlling ac and dc microgrids....

    [...]

  • ...Many droop methods have been proposed for ac and dc microgrids [1], [5], [6], [16]....

    [...]

References
More filters
Book
01 Jan 1994
TL;DR: In this article, the authors present a model for the power system stability problem in modern power systems based on Synchronous Machine Theory and Modelling, and a model representation of the synchronous machine representation in stability studies.
Abstract: Part I: Characteristics of Modern Power Systems. Introduction to the Power System Stability Problem. Part II: Synchronous Machine Theory and Modelling. Synchronous Machine Parameters. Synchronous Machine Representation in Stability Studies. AC Transmission. Power System Loads. Excitation in Stability Studies. Prime Mover and Energy Supply Systems. High-Voltage Direct-Current Transmission. Control of Active Power and Reactive Power. Part III: Small Signal Stability. Transient Stability. Voltage Stability. Subsynchronous Machine Representation in Stability Studies. AC Transmission. Power System Loads. Excitation in Stability Studies. Prime Mover and Energy Supply Systems, High-Voltage Direct-Current Transmission. Control of Active Power and Reactive Power. Part III: Small Signal Stability. Transient Stability. Voltage Stability. Subsynchronous Oscillations. Mid-Term and Long-Term Stability. Methods of Improving System Stability.

13,467 citations

Journal ArticleDOI
TL;DR: The electrical power industry is undergoing rapid change as discussed by the authors, and the major drivers that will determine the speed at which such transformations will occur will be the rising cost of energy, the mass electrification of everyday life, and climate change.
Abstract: Exciting yet challenging times lie ahead. The electrical power industry is undergoing rapid change. The rising cost of energy, the mass electrification of everyday life, and climate change are the major drivers that will determine the speed at which such transformations will occur. Regardless of how quickly various utilities embrace smart grid concepts, technologies, and systems, they all agree onthe inevitability of this massive transformation. It is a move that will not only affect their business processes but also their organization and technologies.

2,906 citations


"Hierarchical control of droop-contr..." refers background in this paper

  • ...DC and ac MGs have been proposed for different applications, and hybrid solutions have been developed [1]–[12]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the feasibility of control strategies to be adopted for the operation of a microgrid when it becomes isolated is evaluated and the need of storage devices and load shedding strategies is evaluated.
Abstract: This paper describes and evaluates the feasibility of control strategies to be adopted for the operation of a microgrid when it becomes isolated. Normally, the microgrid operates in interconnected mode with the medium voltage network; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. An evaluation of the need of storage devices and load shedding strategies is included in this paper.

2,276 citations

Journal ArticleDOI
28 Sep 1991
TL;DR: In this article, a control scheme for parallel-connected inverters in a standalone AC supply system is presented, which uses feedback of only those variables that can be measured locally at the inverter and does not need communication of control signals between the inverters.
Abstract: A scheme for controlling parallel-connected inverters in a standalone AC supply system is presented. This scheme is suitable for control of inverters in distributed source environments such as in isolated AC systems, large and distributed uninterruptible power supply (UPS) systems, photovoltaic systems connected to AC grids, and low-voltage DC power transmission meshes. A key feature of the control scheme is that it uses feedback of only those variables that can be measured locally at the inverter and does not need communication of control signals between the inverters. This is essential for the operation of large AC systems, where distances between inverters make communication impractical. It is also important in high-reliability UPS systems where system operation can be maintained in the face of a communication breakdown. Real and reactive power sharing between inverters can be achieved by controlling two independent quantities: the power angle and the fundamental inverter voltage magnitude. Simulation results are presented. >

1,550 citations

Journal ArticleDOI
TL;DR: This paper deals with the design of the output impedance of uninterruptible power system (UPS) inverters with parallel-connection capability, and proposes novel control loops to achieve both stable output impedance and proper power balance.
Abstract: This paper deals with the design of the output impedance of uninterruptible power system (UPS) inverters with parallel-connection capability. In order to avoid the need for any communication among modules, the power-sharing control loops are based on the P/Q droop method. Since in these systems the power-sharing accuracy is highly sensitive to the inverters output impedance, novel control loops to achieve both stable output impedance and proper power balance are proposed. In this sense, a novel wireless controller is designed by using three nested loops: 1) the inner loop is performed by using feedback linearization control techniques, providing a good quality output voltage waveform; 2) the intermediate loop enforces the output impedance of the inverter, achieving good harmonic power sharing while maintaining low output voltage total harmonic distortion; and 3) the outer loop calculates the output active and reactive powers and adjusts the output impedance value and the output voltage frequency during the load transients, obtaining excellent power sharing without deviations in either the frequency or the amplitude of the output voltage. Simulation and experimental results are reported from a parallel-connected UPS system sharing linear and nonlinear loads.

1,076 citations


"Hierarchical control of droop-contr..." refers background in this paper

  • ...Usually, ZD is designed to be bigger than Zo; in this way, the total equivalent output impedance is mainly dominated by ZD [17]....

    [...]

  • ...The primary-control level can also include the virtual outputimpedance loop in which the output voltage can be expressed as [17]...

    [...]