scispace - formally typeset
Journal ArticleDOI

Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption

Reads0
Chats0
TLDR
In this article, the phase transformation from dendritic α-Fe2O3 to Fe3O4, Fe by partial and full reduction, and Fe 2O3 by reduction−oxidation process.
Abstract
Iron-based microstructured or nanostructured materials, including Fe, γ-Fe2O3, and Fe3O4, are highly desirable for magnetic applications because of their high magnetization and a wide range of magnetic anisotropy. An important application of these materials is use as an electromagnetic wave absorber to absorb radar waves in the centimeter wave (2−18 GHz). Dendrite-like microstructures were achieved with the phase transformation from dendritic α-Fe2O3 to Fe3O4, Fe by partial and full reduction, and γ-Fe2O3 by a reduction−oxidation process, while still preserving the dendritic morphology. The investigation of the magnetic properties and microwave absorbability reveals that the three hierarchical microstructures are typical ferromagnets and exhibit excellent microwave absorbability. In addition, this also confirms that the microwave absorption properties are ascribed to the dielectric loss for Fe and the combination of dielectric loss and magnetic loss for Fe3O4 and γ-Fe2O3.

read more

Citations
More filters
Journal ArticleDOI

Broadband and Tunable High‐Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam

TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.
Journal ArticleDOI

CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption

TL;DR: Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz.
Journal ArticleDOI

Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells

TL;DR: The results indicate that these Fe(3)O(4)@TiO(2) microspheres may be attractive candidate materials for microwave absorption applications.
Journal ArticleDOI

Laminated magnetic graphene with enhanced electromagnetic wave absorption properties

TL;DR: In this paper, the authors reported a facile solvothermal route to synthesize laminated magnetic graphene and showed that there have significant changes in the electromagnetic properties of magnetic graphene when compared with pure graphene.
References
More filters
Journal ArticleDOI

Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices

TL;DR: Thermal annealing converts the internal particle structure from a chemically disordered face- centered cubic phase to the chemically ordered face-centered tetragonal phase and transforms the nanoparticle superlattices into ferromagnetic nanocrystal assemblies that can support high-density magnetization reversal transitions.
Journal ArticleDOI

Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles

TL;DR: An approach to fabricate solid capsules with precise control of size, permeability, mechanical strength, and compatibility is presented, which are hollow, elastic shells whose permeability and elasticity can be precisely controlled.
Journal ArticleDOI

Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes

TL;DR: In this paper, the absorption properties of CNT/crystalline Fe nanocomposites have been investigated and it was shown that the absorption property is due to the confinement of crystalline Fe in carbon nanoshells, deriving mainly from magnetic rather than electric effects.
Journal ArticleDOI

Exchange-coupled nanocomposite magnets by nanoparticle self-assembly

TL;DR: The fabrication of exchange-coupled nanocomposites using nanoparticle self-assembly with an energy product that exceeds the theoretical limit of 13 MG Oe for non-exchange- coupled isotropic FePt by over 50 per cent is reported.
Journal ArticleDOI

Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals

TL;DR: Using the high specific surface area of Fe3O4 NCs that were 12 nanometers in diameter, the mass of waste associated with arsenic removal from water was reduced by orders of magnitude and the size dependence of magnetic separation permitted mixtures of 4- and 12-nanometer–sized Fe3Os to be separated by the application of different magnetic fields.
Related Papers (5)