scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

TL;DR: Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction, showing superior rate capability and cycling performance.
Abstract: Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of flexible solid-state electrochemical supercapacitors and their performance metrics is presented, and a better practice by calculating released energy to evaluate material and device performance is proposed.

679 citations

Journal ArticleDOI
TL;DR: This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis.
Abstract: Catalysis is at the core of almost every established and emerging chemical process and also plays a central role in the quest for novel technologies for the sustainable production and conversion of energy. Particularly since the early 2000s, a great surge of interest exists in the design and application of micro- and nanometer-sized materials with hollow interiors as solid catalysts. This review provides an updated and critical survey of the ever-expanding material architectures and applications of hollow structures in all branches of catalysis, including bio-, electro-, and photocatalysis. First, the main synthesis strategies toward hollow materials are succinctly summarized, with emphasis on the (regioselective) incorporation of various types of catalytic functionalities within their different subunits. The principles underlying the scientific and technological interest in hollow materials as solid catalysts, or catalyst carriers, are then comprehensively reviewed. Aspects covered include the stabilizat...

595 citations

Journal ArticleDOI
TL;DR: An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1.
Abstract: Carbon materials are generally preferred as anodes in supercapacitors; however, their low capacitance limits the attained energy density of supercapacitor devices with aqueous electrolytes. Here, we report a low-crystalline iron oxide hydroxide nanoparticle anode with comprehensive electrochemical performance at a wide potential window. The iron oxide hydroxide nanoparticles present capacitances of 1,066 and 716 F g−1 at mass loadings of 1.6 and 9.1 mg cm−2, respectively, a rate capability with 74.6% of capacitance retention at 30 A g−1, and cycling stability retaining 91% of capacitance after 10,000 cycles. The performance is attributed to a dominant capacitive charge-storage mechanism. An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1. A packaged device delivers gravimetric and volumetric energy densities of 33.14 Wh kg−1 and 17.24 Wh l−1, respectively. Carbons dominate anode materials for supercapacitors, however the attained energy density remains low. Here the authors fabricate low-crystalline iron oxide-hydroxide nanoparticle anodes with good electrochemical characteristics, exhibiting high stability and energy/power densities in a hybrid supercapacitor.

554 citations

Journal ArticleDOI
26 Jan 2016-ACS Nano
TL;DR: A superior lithium and sodium storage performance is derived from the well-designed hierarchical hollow ball-in-ball structure of NiO/Ni/Graphene composites, which not only mitigates the volume expansion of Ni O during the cycles but also provides a continuous highly conductive graphene matrix to facilitate the fast charge transfer and form a stable SEI layer.
Abstract: Ni-based metal organic frameworks (Ni-MOFs) with unique hierarchical hollow ball-in-ball nanostructure were synthesized by solvothermal reactions. After successive carbonization and oxidation treatments, hierarchical NiO/Ni nanocrystals covered with a graphene shell were obtained with the hollow ball-in-ball nanostructure intact. The resulting materials exhibited superior performance as the anode in lithium ion batteries (LIBs): they provide high reversible specific capacity (1144 mAh/g), excellent cyclability (nearly no capacity loss after 1000 cycles) and rate performance (805 mAh/g at 15 A/g). In addition, the hierarchical NiO/Ni/Graphene composites demonstrated promising performance as anode materials for sodium-ion batteries (SIBs). Such a superior lithium and sodium storage performance is derived from the well-designed hierarchical hollow ball-in-ball structure of NiO/Ni/Graphene composites, which not only mitigates the volume expansion of NiO during the cycles but also provides a continuous highly ...

488 citations

Journal ArticleDOI
Mingbo Zheng1, Hao Tang1, Lulu Li1, Qin Hu1, Li Zhang1, Huaiguo Xue1, Huan Pang1 
TL;DR: The research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed.
Abstract: Lithium-ion batteries (LIBs) have been widely used in the field of portable electric devices because of their high energy density and long cycling life. To further improve the performance of LIBs, it is of great importance to develop new electrode materials. Various transition metal oxides (TMOs) have been extensively investigated as electrode materials for LIBs. According to the reaction mechanism, there are mainly two kinds of TMOs, one is based on conversion reaction and the other is based on intercalation/deintercalation reaction. Recently, hierarchically nanostructured TMOs have become a hot research area in the field of LIBs. Hierarchical architecture can provide numerous accessible electroactive sites for redox reactions, shorten the diffusion distance of Li-ion during the reaction, and accommodate volume expansion during cycling. With rapid research progress in this field, a timely account of this advanced technology is highly necessary. Here, the research progress on the synthesis methods, morphological characteristics, and electrochemical performances of hierarchically nanostructured TMOs for LIBs is summarized and discussed. Some relevant prospects are also proposed.

414 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Abstract: New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

8,157 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: Some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries are reviewed.
Abstract: Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries.

5,441 citations

Journal ArticleDOI
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

4,105 citations