scispace - formally typeset
SciSpace - Your AI assistant to discover and understand research papers | Product Hunt

Journal ArticleDOI

Hierarchical spin-orbital polarization of a giant Rashba system.

01 Sep 2015-Science Advances (American Association for the Advancement of Science)-Vol. 1, Iss: 8

TL;DR: Angle-resolved photoemission reveals the emergence of complex orbital texture concomitant with spin splitting in the Rashba compound BiTeI, and necessitates a reinterpretation ofspin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

AbstractThe Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

Topics: Rashba effect (69%), Spin polarization (63%), Spintronics (59%), Spin–orbit interaction (56%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
28 Sep 2017-Nature
TL;DR: The findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.
Abstract: Engineering and enhancing the breaking of inversion symmetry in solids-that is, allowing electrons to differentiate between 'up' and 'down'-is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies-that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

87 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization.
Abstract: Semiconductors with strong spin–orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin–orbit effects for spin manipulation. Here we employ a state-of-the-art photoelectron momentum microscope with a multichannel spin filter to directly image the spin texture of the layered polar semiconductor BiTeI within the full two-dimensional momentum plane. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization. These observations open avenues for spin-texture manipulation by atomic-layer and charge carrier control in polar semiconductors.

58 citations


Journal ArticleDOI
TL;DR: The design of asymmetric heterostructures enables the Rashba spin-orbit interaction to be tuned between two regimes, and the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic RashBA effects in the oxide heterostructure is reported.
Abstract: The Rashba effect plays important roles in emerging quantum materials physics and potential spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO3//SrTiO3/LaAlO3 (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric structure, and broken inversion symmetry is created by the inequivalent bottom and top interfaces due to their opposite polar discontinuities. Furthermore, we report the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals. Such asymmetric oxide heterostructures with initially centrosymmetric materials provide a general strategy for tuning the Rashba SOI in artificial quantum materials. The two-dimensional electron gases that form at LaAlO3/SrTiO3 heterostructure interfaces feature strong spin-orbit interactions, leading to proposed spintronic applications. Lin et al. show that the design of asymmetric heterostructures enables the Rashba spin-orbit interaction to be tuned between two regimes.

39 citations


Journal ArticleDOI
TL;DR: It is found that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting the interpretation.
Abstract: We investigate the hidden Berry curvature in bulk 2H-WSe_{2} by utilizing the surface sensitivity of angle resolved photoemission (ARPES). The symmetry in the electronic structure of transition metal dichalcogenides is used to uniquely determine the local orbital angular momentum (OAM) contribution to the circular dichroism (CD) in ARPES. The extracted CD signals for the K and K^{'} valleys are almost identical, but their signs, which should be determined by the valley index, are opposite. In addition, the sign is found to be the same for the two spin-split bands, indicating that it is independent of spin state. These observed CD behaviors are what are expected from Berry curvature of a monolayer of WSe_{2}. In order to see if CD-ARPES is indeed representative of hidden Berry curvature within a layer, we use tight binding analysis as well as density functional calculation to calculate the Berry curvature and local OAM of a monolayer WSe_{2}. We find that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting our interpretation.

29 citations


Journal ArticleDOI
TL;DR: The model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries, and direct detection of coherent spin phenomena by laser-SARPES enables the tuning of the spin polarization of optically excited electrons in solids with strongspin–orbit interaction.
Abstract: Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

27 citations


References
More filters

01 Jan 1995

14,960 citations


Journal ArticleDOI
Abstract: We propose an electron wave analog of the electro‐optic light modulator. The current modulation in the proposed structure arises from spin precession due to the spin‐orbit coupling in narrow‐gap semiconductors, while magnetized contacts are used to preferentially inject and detect specific spin orientations. This structure may exhibit significant current modulation despite multiple modes, elevated temperatures, or a large applied bias.

4,043 citations


"Hierarchical spin-orbital polarizat..." refers background in this paper

  • ...The ability to electrostatically control the strength of such spin splitting [4–7] has led to prospects for all-electrical manipulation of electron spin precession [8], offering new prototypical schemes of semiconductor spintronics [1]....

    [...]


Journal ArticleDOI
J.J. Yeh1, I. Lindau1
Abstract: Atomic subshell photoionization cross sections and asymmetry parameters are calculated with the Hartree-Fock-Slater one-electron central potential model (dipole approximation) for all elements Z = 1–103. The cross-section results are plotted for all subshells in the energy region 0–1500 eV, and cross sections and asymmetry parameters are tabulated for selected energies in the region 10.2–8047.8 eV. In addition, more detailed graphs are given for the 4d (Z = 39–71) and 5d (Z = 64–100) subshell cross sections in the vicinity of the Cooper minimum. These data should be particularly useful for work based on spectroscopic investigations of atomic subshells using synchrotron radiation and/or discrete line sources.

3,563 citations


Journal ArticleDOI
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

2,787 citations


"Hierarchical spin-orbital polarizat..." refers background or methods in this paper

  • ...To disentangle these, we combine two powerful features of ARPES: characteristic selection rules for photoemission using linearly-polarised light, allowing us to directly probe the orbital wavefunction [19, 20], and resonant photoemission to provide elemental sensitivity [21]....

    [...]

  • ...Selection rules [19] dictate that, of the p-orbitals, the former measurement should be sensitive to pz- and px-derived orbital character, while the transition matrix element is only non-vanishing for photoemission from py orbitals in the latter case (our measurement geometry is shown in Fig....

    [...]


Journal ArticleDOI
Abstract: We have confirmed that a spin-orbit interaction in an inverted I${\mathrm{n}}_{0.53}$G${\mathrm{a}}_{0.47}$As/I${\mathrm{n}}_{0.52}$A${\mathrm{l}}_{0.48}$As quantum well can be controlled by applying a gate voltage. This result shows that the spin-orbit interaction of a two-dimensional electron gas depends on the surface electric field. The dominant mechanism for the change in the spin-orbit interaction parameter can be attributed to the Rashba term. This inverted I${\mathrm{n}}_{0.53}$G${\mathrm{a}}_{0.47}$As/I${\mathrm{n}}_{0.52}$A${\mathrm{l}}_{0.48}$As heterostructure is one of the promising materials for the spin-polarized field effect transistor which is proposed by Datta and Das [Appl. Phys. Lett. 56, 665 (1990)].

1,707 citations