scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes

01 Oct 2017-Advanced Materials (John Wiley & Sons, Ltd)-Vol. 29, Iss: 38, pp 1700783
TL;DR: It is suggested that an optimized microstructure with moderate electrode/electrolyte interface area is critical to accommodate volume change and inhibit the risks of irreversible Li consumption by side reactions and Li dendrite growth for high-performance Li-metal anodes.
Abstract: Lithium metal is an attractive anode material for rechargeable batteries because of its high theoretical specific capacity of 3860 mA h g-1 and the lowest negative electrochemical potential of -3.040 V versus standard hydrogen electrode. Despite extensive research efforts on tackling the safety concern raised by Li dendrites, inhibited Li dendrite growth is accompanied with decreased areal capacity and Li utilization, which are still lower than expectation for practical use. A scaffold made of covalently connected graphite microtubes is reported, which provides a firm and conductive framework with moderate specific surface area to accommodate Li metal for anodes of Li batteries. The anode presents an areal capacity of 10 mA h cm-2 (practical gravimetric capacity of 913 mA h g-1 ) at a current density of 10 mA cm-2 , with Li utilization of 91%, Coulombic efficiencies of ≈97%, and long lifespan of up to 3000 h. The analysis of structure evolution during charge/discharge shows inhibited lithium dendrite growth and a reversible electrode volume change of ≈9%. It is suggested that an optimized microstructure with moderate electrode/electrolyte interface area is critical to accommodate volume change and inhibit the risks of irreversible Li consumption by side reactions and Li dendrite growth for high-performance Li-metal anodes.
Citations
More filters
Journal ArticleDOI
TL;DR: This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anode through the immersion of lithium plates into the fluoroethylene carbonate solvent.
Abstract: Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO2 Li and ROLi) on the top and abundant inorganic components (Li2 CO3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.

393 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce general strategies to address the problems of Li metal anodes and the special issues for the cathodes in Li-S and Li-O2 batteries respectively.

366 citations

Journal ArticleDOI
TL;DR: An overview of the fundamental understandings of solid electrolyte interphase (SEI) formation, conceptual models, and advanced real-time characterizations of LMI are presented and practical challenges in competing with graphite and silicon anodes are outlined.
Abstract: Lithium metal anodes are potentially key for next-generation energy-dense batteries because of the extremely high capacity and the ultralow redox potential. However, notorious safety concerns of Li metal in liquid electrolytes have significantly retarded its commercialization: on one hand, lithium metal morphological instabilities (LMI) can cause cell shorting and even explosion; on the other hand, breaking of the grown Li arms induces the so-called "dead Li"; furthermore, the continuous consumption of the liquid electrolyte and cycleable lithium also shortens cell life. The research community has been seeking new strategies to protect Li metal anodes and significant progress has been made in the last decade. Here, an overview of the fundamental understandings of solid electrolyte interphase (SEI) formation, conceptual models, and advanced real-time characterizations of LMI are presented. Instructed by the conceptual models, strategies including increasing the donatable fluorine concentration (DFC) in liquid to enrich LiF component in SEI, increasing salt concentration (ionic strength) and sacrificial electrolyte additives, building artificial SEI to boost self-healing of natural SEI, and 3D electrode frameworks to reduce current density and delay Sand's extinction are summarized. Practical challenges in competing with graphite and silicon anodes are outlined.

328 citations

Journal ArticleDOI
TL;DR: A deposition-regulating strategy to form conductivity and lithiophilicity gradients which serve to guide the preferential lithium growth away from the interface between anode and separator and mitigate the dendrite-induced short circuits is reported.
Abstract: Lithium metal anodes hold great promise to enable high-energy battery systems. However, lithium dendrites at the interface between anode and separator pose risks of short circuits and fire, impeding the safe application. In contrast to conventional approaches of suppressing dendrites, here we show a deposition-regulating strategy by electrically passivating the top of a porous nickel scaffold and chemically activating the bottom of the scaffold to form conductivity/lithiophilicity gradients, whereby lithium is guided to deposit preferentially at the bottom of the anode, safely away from the separator. The resulting lithium anodes significantly reduce the probability of dendrite-induced short circuits. Crucially, excellent properties are also demonstrated at extremely high capacity (up to 40 mAh cm−2), high current density, and/or low temperatures (down to −15 °C), which readily induce dendrite shorts in particular. This facile and viable deposition-regulating strategy provides an approach to preferentially deposit lithium in safer positions, enabling a promising anode for next-generation lithium batteries. Here the authors report a deposition-regulating strategy to form conductivity and lithiophilicity gradients which serve to guide the preferential lithium growth away from the interface between anode and separator and mitigate the dendrite-induced short circuits.

209 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Abstract: Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g−1), low density (0.59 g cm−3) and the lowest negative electrochemical potential (−3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li–air batteries, Li–S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed.

3,394 citations