scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-Efficiency n-Type Si Solar Cells With Novel Inkjet-Printed Boron Emitters

TL;DR: In this paper, a boron-inkjet printing method was used to create high efficiency n-type Si cells with a Voc of 644 mV, a Jsc of 38.6 mA/cm2, and a fill factor of 76.3%.
Abstract: Formation of a well-passivated boron emitter for mass production of low-cost and high-efficiency n-type silicon solar cells is a major challenge in the photovoltaic industry. In this letter, we report on a novel and commercially viable method, inkjet printing, to create boron emitters. Phosphorus diffusion was used on the rear to form a back-surface held in conjunction with chemically grown oxide/silicon nitride (SiNx) stack on the front and back for surface passivation. Finally, front and back screen-printed contacts were formed through the dielectric stacks to fabricate large-area (239 cm2) n-type cells. This technology resulted in 19.0%-efficient p+-n-n+ cells with a Voc of 644 mV, a Jsc of 38.6 mA/cm2, and a fill factor of 76.3%. This demonstrates for the hrst time the promise of boron-inkjet-printing technology for low-cost and high-performance n-type Si cells.
Citations
More filters
Journal ArticleDOI
TL;DR: In the past few decades, the fabrication of solar cells has been considered as one of the most promising ways to meet the increasing energy demands to support the development of modern society as well as to control the environmental pollution caused by the combustion of fossil fuels as discussed by the authors.
Abstract: In the past few decades, the fabrication of solar cells has been considered as one of the most promising ways to meet the increasing energy demands to support the development of modern society as well as to control the environmental pollution caused by the combustion of fossil fuels. A number of different types of solar cells, such as silicon solar cells (Si), Cu-based chalcogenides (Cu(In,Ga)Se2/Cu2ZnSn(S,Se)4) thin film solar cells (TFSC), dye-sensitized solar cells (DSSC), organic solar cells (OSC), and perovskite solar cells (PVSC), have been implemented in the photovoltaic technology. However, the high manufacturing costs of solar cells is one of the major obstacles for their wide-scale application. In this regard, inkjet printing has attracted tremendous interest in both academic research and industrial applications among all the various kinds of fabrication techniques and is believed to be one of the most promising methods to meet these requirements. The great advantages of inkjet printing are that the process is contactless, maskless and has a high material utilization rate, and good scalability, and compatibility of the roll-to-roll process. Additionally, the maskless nature of inkjet printing allows for freedom of design, which enables multi-functional properties of solar cells (i.e., power source and artwork) to be realized. In this review, the recent advances in inkjet printing with the deposition of different layers of various types of solar cells are summarized in detail and prospectives for the future development of printed/flexible solar cells are covered.

87 citations

Journal ArticleDOI
TL;DR: Investigations of inkjet-printing in the field of silicon photovoltaics are reviewed, focusing on the different inkjet processes for individual fabrication steps of a solar cell.
Abstract: The world's ever increasing demand for energy necessitates technologies that generate electricity from inexhaustible and easily accessible energy sources. Silicon photovoltaics is a technology that can harvest the energy of sunlight. Its great characteristics have fueled research and development activities in this exciting field for many years now. One of the most important activities in the solar cell community is the investigation of alternative fabrication and structuring technologies, ideally serving both of the two main goals: device optimization and reduction of fabrication costs. Inkjet technology is practically evaluated along the whole process chain. Research activities cover many processes, such as surface texturing, emitter formation, or metallization. Furthermore, the inkjet technology itself is manifold as well. It can be used to apply inks that serve as a functional structure, present in the final device, as mask for subsequent structuring steps, or even serve as a reactant source to activate chemical etch reactions. This article reviews investigations of inkjet-printing in the field of silicon photovoltaics. The focus is on the different inkjet processes for individual fabrication steps of a solar cell. A technological overview and suggestions about where future work will be focused on are also provided. The great variety of the investigated processes highlights the ability of the inkjet technology to find its way into many other areas of functional printing and printed electronics.

66 citations

Journal ArticleDOI
TL;DR: In this article, the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials-based solar cells are reviewed.

56 citations


Cites background from "High-Efficiency n-Type Si Solar Cel..."

  • ...GaAsP/c-Si [16,18,21,56-58,60] GaNAsP/c-Si [12,61,62] [383,386, 9-412] 381,430,431] 392,437,438] [393,441-443]...

    [...]

  • ...Cost-effective 984 techniques to diffuse boron are being promoted [134-136], as the traditional boron tribromide 985 (BBr3) source in a diffusion furnace implies a batch type process, and a somewhat involved 986 process optimization [137,138]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an effective chemical etching treatment to remove a boron-rich layer which has a significant negative impact on n-type silicon (Si) solar cells with a BORON emitter was reported.
Abstract: This paper reports on an effective chemical etching treatment to remove a boron-rich layer which has a significant negative impact on n-type silicon (Si) solar cells with boron emitter. A nitric acid-grown oxide/silicon nitride stack passivation on the boron-rich layer-etched boron emitter markedly decreases the emitter saturation current density J0e from 430 to 100 fA/cm2. This led to 1.6% increase in absolute cell efficiency including 22 mV increase in open-circuit voltage Voc and 1.9 mA/cm2 increase in short-circuit current density Jsc. This resulted in screen-printed large area (239 cm2) n-type Si solar cells with efficiency of 19.0%.

49 citations

Journal ArticleDOI
TL;DR: In this article, the fabrication of front junction n-type Si solar cells on 239 cm 2 Cz using ion implanted boron emitter and phosphorus back surface field (BSF) in combination with screen printed metallization was reported.

43 citations

References
More filters
Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
TL;DR: In this paper, the Australian Research Council and The Netherlands Agency for Energy and the Environment (AEDC) have supported the work of the authors, which has been supported by the AEDC and the Netherlands Environment Agency.
Abstract: This work has been supported by the Australian Research Council and The Netherlands Agency for Energy and the Environment.

463 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that the minority carrier lifetime in boron-doped oxygen-contaminated Czochralski (Cz) silicon is strongly reduced under illumination or carrier injection.
Abstract: The minority carrier lifetime in boron-doped oxygen-contaminated Czochralski (Cz) silicon is strongly reduced under illumination or carrier injection. This process can be fully reversed by a 200 °C anneal step. In several recent studies it was shown that boron and oxygen are the major components of the underlying metastable Cz-specific defect. The energy level of the defect in its active state A was determined to be around midgap [Schmidt et al., J. Appl. Phys. 86, 3175 (1999)] while the energy level of the defect in its passive state P is very shallow. The Cz-specific defect in its passive state can be identified with the shallow thermal donor. The kinetics of the excess carrier-induced transformation from state P to state A can be described using recombination-enhanced defect reaction theory. On the basis of these experimental facts different solutions for the reduction or elimination of the metastable defect are suggested. Two promising solutions are discussed in more detail: the use of gallium-doped C...

319 citations

Proceedings ArticleDOI
29 Sep 1997
TL;DR: In this article, the authors performed comprehensive carrier lifetime measurements on solar and electronic-grade boron, gallium, and phosphorus doped Cz wafers obtained from different manufacturers.
Abstract: In the literature it is well known that the low-injection bulk carrier lifetime of boron-doped Cz-grown silicon is not a constant material property but, depending on previous thermal treatments and light exposure, varies between two states corresponding to a high and a low lifetime value. The upper state is obtained by means of low-temperature annealing, while illumination degrades the lifetime towards the value of the lower state. In order to improve the understanding of this phenomenon, we performed comprehensive carrier lifetime measurements on solar- and electronic-grade boron, gallium, and phosphorus doped Cz wafers obtained from different manufacturers. Based on the experimental results, a new model is introduced which attributes the disappointingly low stable lifetimes of illuminated boron-doped Cz silicon with resistivity around 1 /spl Omega/cm to boron-oxygen pairs. From this model, simple recipes are derived which might lead to an improvement of the efficiency of commercial Cz silicon solar cells.

213 citations


"High-Efficiency n-Type Si Solar Cel..." refers background in this paper

  • ...such as higher tolerance to metallic impurities, much better stability under illumination, and higher bulk lifetime [1]–[6]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafer was presented.
Abstract: Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells

161 citations