scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy

04 Oct 2005-Applied Physics Letters (American Institute of PhysicsAIP)-Vol. 87, Iss: 15, pp 152101
TL;DR: In this article, the acceptor energy level of Sb dopant is estimated to be 0.2 eV above the valence band, which is an excellent dopant for reliable and reproducible p-type ZnO fabrication.
Abstract: Reproducible Sb-doped p-type ZnO films were grown on n-Si (100) by electron-cyclotron-resonance-assisted molecular-beam epitaxy. The existence of Sb in ZnO:Sb films was confirmed by low-temperature photoluminescence measurements. An acceptor-bound exciton (A°X) emission was observed at 3.358 eV at 8 K. The acceptor energy level of the Sb dopant is estimated to be 0.2 eV above the valence band. Temperature-dependent Hall measurements were performed on Sb-doped ZnO films. At room temperature, one Sb-doped ZnO sample exhibited a low resistivity of 0.2Ωcm, high hole concentration of 1.7×1018cm−3 and high mobility of 20.0cm2∕Vs. This study suggests that Sb is an excellent dopant for reliable and reproducible p-type ZnO fabrication.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations

Journal ArticleDOI
TL;DR: A review of defects in ZnO is presented in this paper, with an emphasis on the physical properties of point defects in bulk crystals, and the problem of acceptor dopants remains a key challenge.
Abstract: Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-t...

995 citations

Journal ArticleDOI
TL;DR: ZnO has attracted considerable attention for optical device applications because of several potential advantages over GaN, such as commercial availability of bulk single crystals and a larger exciton binding energy (~60 meV compared with ~25 meV for GaN) as discussed by the authors.
Abstract: ZnO has attracted considerable attention for optical device applications because of several potential advantages over GaN, such as commercial availability of bulk single crystals and a larger exciton binding energy (~60 meV compared with ~25 meV for GaN). Recent improvements in the control of background conductivity of ZnO and demonstrations of p-type doping have intensified interest in this material for applications in light-emitting diodes (LEDs). In this paper, we summarize recent progress in ZnO-based LEDs. Physical and electrical properties, bandgap engineering, and growth of n- and p-type ZnO thin films are also reviewed.

332 citations


Cites methods from "High-mobility Sb-doped p-type ZnO b..."

  • ...[96] fabricated Sb-doped p-type ZnO films by a molecular beam epitaxy (MBE) and reported p-type conductivity with a very low resistivity of 0....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors discuss p-type ZnO materials: theory, growth, properties and devices, comprehensively, and summarize the growth techniques and properties of P-type materials.

329 citations

References
More filters
Journal ArticleDOI
TL;DR: A first-principles investigation, based on density functional theory, produces strong evidence that hydrogen acts as a source of conductivity: it can incorporate in high concentrations and behaves as a shallow donor.
Abstract: Zinc oxide, a wide-band-gap semiconductor with many technological applications, typically exhibits n-type conductivity. The cause of this conductivity has been widely debated. A first-principles investigation, based on density functional theory, produces strong evidence that hydrogen acts as a source of conductivity: it can incorporate in high concentrations and behaves as a shallow donor. This behavior is unexpected and very different from hydrogen's role in other semiconductors, in which it acts only as a compensating center and always counteracts the prevailing conductivity. These insights have important consequences for control and utilization of hydrogen in oxides in general.

2,970 citations

Journal ArticleDOI
TL;DR: Wurtzitic ZnO is a widebandgap semiconductor which has many applications, such as piezoelectric transducers, varistors, phosphors, and transparent conducting films as discussed by the authors.
Abstract: Wurtzitic ZnO is a wide-bandgap (3.437 eV at 2 K) semiconductor which has many applications, such as piezoelectric transducers, varistors, phosphors, and transparent conducting films. Most of these applications require only polycrystalline material; however, recent successes in producing large-area single crystals have opened up the possibility of producing blue and UV light emitters, and high-temperature, high-power transistors. The main advantages of ZnO as a light emitter are its large exciton binding energy (60 meV), and the existence of well-developed bulk and epitaxial growth processes; for electronic applications, its attractiveness lies in having high breakdown strength and high saturation velocity. Optical UV lasing, at both low and high temperatures, has already been demonstrated, although efficient electrical lasing must await the further development of good, p-type material. ZnO is also much more resistant to radiation damage than are other common semiconductor materials, such as Si, GaAs, CdS, and even GaN; thus, it should be useful for space applications.

2,573 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a new technique to fabricate p-type ZnO reproducibly, and showed high-quality undoped films with electron mobility exceeding that in the bulk.
Abstract: Since the successful demonstration of a blue light-emitting diode (LED)1, potential materials for making short-wavelength LEDs and diode lasers have been attracting increasing interest as the demands for display, illumination and information storage grow2,3,4. Zinc oxide has substantial advantages including large exciton binding energy, as demonstrated by efficient excitonic lasing on optical excitation5,6. Several groups have postulated the use of p-type ZnO doped with nitrogen, arsenic or phosphorus7,8,9,10, and even p–n junctions11,12,13. However, the choice of dopant and growth technique remains controversial and the reliability of p-type ZnO is still under debate14. If ZnO is ever to produce long-lasting and robust devices, the quality of epitaxial layers has to be improved as has been the protocol in other compound semiconductors15. Here we report high-quality undoped films with electron mobility exceeding that in the bulk. We have used a new technique to fabricate p-type ZnO reproducibly. Violet electroluminescence from homostructural p–i–n junctions is demonstrated at room-temperature.

1,964 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the intrinsic defect physics of ZnO and find that ZnOs cannot be doped p type via native defects, despite the fact that they are shallow donors.
Abstract: ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including ${\mathrm{Zn}}_{\mathrm{O}},$ ${\mathrm{Zn}}_{i},$ ${\mathrm{V}}_{\mathrm{O}},$ ${\mathrm{O}}_{i},$ and ${V}_{\mathrm{Zn}}$ and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, ${\mathrm{Zn}}_{i},$ is a shallow donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of ${\mathrm{Zn}}_{i}$ (interstitial O, ${\mathrm{O}}_{i},$ and Zn vacancy, ${V}_{\mathrm{Zn}}),$ have high formation enthalpies for Zn-rich conditions, so these ``electron killers'' are not abundant. We find that ZnO cannot be doped p type via native defects $({\mathrm{O}}_{i},{V}_{\mathrm{Zn}})$ despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping ${(V}_{\mathrm{O}}{,\mathrm{}\mathrm{Zn}}_{i},{\mathrm{Zn}}_{\mathrm{O}})$ have low formation enthalpies so these ``hole killers'' form readily. Furthermore, we identify electron-hole radiative recombination at the ${V}_{\mathrm{O}}$ center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity.

1,724 citations

Journal ArticleDOI
TL;DR: An N-doped p-type ZnO layer has been grown by molecular beam epitaxy on an Li-diffused, bulk, semi-insulating, N-O substrate as discussed by the authors.
Abstract: An N-doped, p-type ZnO layer has been grown by molecular beam epitaxy on an Li-diffused, bulk, semi-insulating ZnO substrate. Hall-effect and conductivity measurements on the layer give: resistivity=4×101 Ω cm; hole mobility=2 cm2/V s; and hole concentration=9×1016 cm−3. Photoluminescence measurements in this N-doped layer show a much stronger peak near 3.32 eV (probably due to neutral acceptor bound excitons), than at 3.36 eV (neutral donor bound excitons), whereas the opposite is true in undoped ZnO. Calibrated, secondary-ion mass spectroscopy measurements show an N surface concentration of about 1019 cm−3 in the N-doped sample, but only about 1017 cm−3 in the undoped sample.

1,237 citations