scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High Nitrogen Enhance Drought Tolerance in Cotton through Antioxidant Enzymatic Activities, Nitrogen Metabolism and Osmotic Adjustment

01 Feb 2020-Vol. 9, Iss: 2, pp 178
TL;DR: The present data suggest that relatively high N concentrations may contribute to drought stress tolerance in cotton through N metabolism, antioxidant capacity, and osmotic adjustment.
Abstract: Drought is one of the most important abiotic stresses and hampers many plant physiological processes under suboptimal nitrogen (N) concentration. Seedling tolerance to drought stress is very important for optimum growth and development, however, the enhancement of plant stress tolerance through N application in cotton is not fully understood. Therefore, this study investigates the role of high N concentration in enhancing drought stress tolerance in cotton. A hydroponic experiment supplying low (0.25 mM) and high (5 mM) N concentrations, followed by 150 g L-1 polyethylene glycol (PEG)-induced stress was conducted in a growth chamber. PEG-induced drought stress inhibited seedling growth, led to oxidative stress from excessive malondialdehyde (MDA) generation, and reduced N metabolism. High N concentrations alleviated oxidative damage and stomatal limitation by increasing antioxidant enzymatic activities, leaf relative water content, and photosynthesis in cotton seedlings under drought stress. The results revealed that the ameliorative effects of high N concentration may be ascribed to the enhancement of N metabolizing enzymes and an increase in the amounts of osmoprotectants like free amino acids and total soluble protein. The present data suggest that relatively high N concentrations may contribute to drought stress tolerance in cotton through N metabolism, antioxidant capacity, and osmotic adjustment.
Citations
More filters
Journal ArticleDOI
15 Feb 2020
TL;DR: The results indicated the key role of shoot glutamine synthetase (GS) and root total soluble protein in NUtE and tissue N concentration and N-metabolizing enzymes were considered as the key traits in conferring high NUpE, and multi-omics studies will be employed to focus on the key genes and pathways involved in N metabolism and their role in improving NUE.
Abstract: Cotton production is highly sensitive to nitrogen (N) fertilization, whose excessive use is responsible for human and environmental problems. Lowering N supply together with the selection of N-efficient genotypes, more able to uptake, utilize, and remobilize the available N, could be a challenge to maintain high cotton production sustainably. The current study aimed to explore the intraspecific variation among four cotton genotypes in response to various N supplies, in order to identify the most distinct N-efficient genotypes and their nitrogen use efficiency (NUE)-related traits in hydroponic culture. On the basis of shoot dry matter, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting N metabolism, uptake (NUpE), and utilization efficiency (NUtE). Overall, our results indicated the key role of shoot glutamine synthetase (GS) and root total soluble protein in NUtE. Conversely, tissue N concentration and N-metabolizing enzymes were considered as the key traits in conferring high NUpE. The remobilization of N from the shoot to roots by high shoot GS activity may be a strategy to enhance root total soluble protein, which improves root growth for N uptake and NUE. In future, multi-omics studies will be employed to focus on the key genes and pathways involved in N metabolism and their role in improving NUE.

27 citations


Cites methods from "High Nitrogen Enhance Drought Toler..."

  • ...For the determination of total free amino acids, the ninhydrin method was used as previously described [88] with some modifications [89]....

    [...]

Journal ArticleDOI
30 Apr 2022-Plants
TL;DR: In this paper , the effect of grain priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions was evaluated.
Abstract: Drought is the main limiting abiotic environmental stress worldwide. Water scarcity restricts the growth, development, and productivity of crops. Wheat (Triticum aestivum L.) is a fundamentally cultivated cereal crop. This study aimed to evaluate the effect of grain-priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions. Morphological growth parameters, photosynthetic pigments, soluble sugars, free amino acids, proline, total phenols, flavonoids, and proteins profiles were determined. Drought stress lowered plant growth parameters and chlorophyll a and b contents while increasing carotenoids, soluble sugars, free amino acids, proline, total phenols, and flavonoids. Soaking wheat grains with arginine (0.25, 0.5, and 1 mM) improves plant growth and mitigates the harmful effects of drought stress. The most effective treatment to alleviate the effects of drought stress on wheat plants was (1 mM) arginine, that increased root length (48.3%), leaves number (136%), shoot fresh weight (110.5%), root fresh weight (110.8%), root dry weight (107.7%), chlorophyll a (11.4%), chlorophyll b (38.7%), and carotenoids content (41.9%) compared to the corresponding control values. Arginine enhanced the synthesis of soluble sugars, proline, free amino acids, phenols, and flavonoids in wheat plants under normal or stressed conditions. Furthermore, the protein profile varies in response to drought stress and arginine pretreatments. Ultimately, pretreatment with arginine had a powerful potential to face the impacts of drought stress on wheat plants by promoting physiological and metabolic aspects.

18 citations

Journal ArticleDOI
TL;DR: This review highlights the water deficit stress induced habitual, physiological and biochemical changes during the reproductive growth leading to poor development of fiber and highlights the effect of drought stress on assimilate accumulation and portioning in reproductive tissues of cotton which finally converts into the fiber.

16 citations

Journal ArticleDOI
TL;DR: In this paper , a hydroponic experiment was designed in which S. japonica seedlings were supplied with sole ammonium (NH4+) or sole nitrate (NO3−) nutrition under 75 mM NaCl-induced salt stress.

10 citations

References
More filters
Journal ArticleDOI
TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.

225,085 citations


"High Nitrogen Enhance Drought Toler..." refers methods in this paper

  • ...The reaction mixture was composed of 2 mL d H2O, enzyme extract (20 µL), and Bradford reagent Plants 2020, 9, 178 17 of 22 (0.5 mL)....

    [...]

  • ...Total soluble protein was measured according to the method used by Bradford [81], using albumin bovine [82]....

    [...]

Book ChapterDOI
TL;DR: In this article, the catalytic activity of catalase has been investigated using ultraviolet (UV) spectrophotometry and Titrimetric methods, which is suitable for comparative studies for large series of measurements.
Abstract: Publisher Summary Catalase exerts a dual function: (1) decomposition of H 2 O 2 to give H 2 O and O 2 (catalytic activity) and (2) oxidation of H donors, for example, methanol, ethanol, formic acid, phenols, with the consumption of 1 mol of peroxide (peroxide activity) The kinetics of catalase does not obey the normal pattern Measurements of enzyme activity at substrate saturation or determination of the K s is therefore impossible In contrast to reactions proceeding at substrate saturation, the enzymic decomposition of H 2 O 2 is a first-order reaction, the rate of which is always proportional to the peroxide concentration present Consequently, to avoid a rapid decrease in the initial rate of the reaction, the assay must be carried out with relatively low concentrations of H 2 O 2 (about 001 M) This chapter discusses the catalytic activity of catalase The method of choice for biological material, however, is ultraviolet (UV) spectrophotometry Titrimetric methods are suitable for comparative studies For large series of measurements, there are either simple screening tests, which give a quick indication of the approximative catalase activity, or automated methods

20,238 citations

Journal ArticleDOI
TL;DR: Evidence that a copper enzyme, polyphenoloxidase (otherwise known as tyrosinase or catecholase), is localized in the chloroplasts of spinach beet (chard), Beta vu?garis is presented.
Abstract: The chloroplast, as the seat of chlorophyll pigments in plants, occupies a unique position in the economy of the green cell. In recent years there has been a renewed interest in the reactions and properties of chloroplasts as a result of the work of Hill (11, 12) and Hill and Scarisbrick (13, 14) who demonstrated that the reaction characteristic of photosynthesis in green plants, the evolution of oxygen, occurs in appreciable quantities in isolated chloroplasts under the influence of light and in the presence of suitable oxidants (2, 7, 8, 26). In the course of an investigation of oxygen evolution by isolated chloroplasts it was deemed important to explore their enzymatic composition. Of special interest were considered enzymes capable of participating in oxidation-reduction reactions, and more particularly, those localized principally, if not entirely, in the chloroplasts. This paper presents evidence that a copper enzyme, polyphenoloxidase (otherwise known as tyrosinase or catecholase), is localized in the chloroplasts of spinach beet (chard), Beta vu?garis.

20,139 citations

Journal ArticleDOI
TL;DR: The staining procedure for localizing superoxide dismutase on polyacrylamide electrophoretograms has been applied to extracts obtained from a variety of sources and could thus be assayed either in crude extracts or in purified protein fractions.

10,933 citations

Journal ArticleDOI
TL;DR: It is concluded that isolated chloroplasts upon illumination can undergo a cyclic peroxidation initiated by the light absorbed by chlorophyll.

8,615 citations


"High Nitrogen Enhance Drought Toler..." refers methods in this paper

  • ...5 g fresh samples were used and the data were obtained using the published protocol [73]....

    [...]

Related Papers (5)