scispace - formally typeset
Journal ArticleDOI

High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes

Reads0
Chats0
TLDR
Dense, perfectly aligned arrays of long, perfectly linear SWNTs are reported as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices, representing a route to large-scale integrated nanotube electronics.
Abstract
†Single-walled carbon nanotubes (SWNTs) have many exceptional electronic properties. Realizing the full potential of SWNTs in realistic electronic systems requires a scalable approach to device and circuit integration. We report the use of dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin-film semiconductor suitable for integration into transistors and other classes of electronic devices. The large number of SWNTs enable excellent device-level performance characteristics and good device-to-device uniformity, even with SWNTs that are electronically heterogeneous. Measurements on p- and n-channel transistors that involve as many as 2,100 SWNTs reveal device-level mobilities and scaled transconductances approaching 1,000 cm 2 V 21 s 21 and 3,000 S m 21 , respectively, and with current outputs of up to 1 A in devices that use interdigitated electrodes. PMOS and CMOS logic gates and mechanically flexible transistors on plastic provide examples of devices that can be formed with this approach. Collectively, these results may represent a route to large-scale integrated nanotube electronics.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The chemistry of graphene oxide

TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Journal ArticleDOI

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material

TL;DR: A solution-based method is reported that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas, which could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
Journal ArticleDOI

Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance

TL;DR: In this paper, the sheet resistance of graphite oxide film reduced using sodium borohydride (NaBH4) is much lower than that of films reduced using hydrazine (N2H4).
Journal ArticleDOI

25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress

TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
References
More filters
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

Logic circuits with carbon nanotube transistors

TL;DR: This work demonstrates logic circuits with field-effect transistors based on single carbon nanotubes that exhibit a range of digital logic operations, such as an inverter, a logic NOR, a static random-access memory cell, and an ac ring oscillator.
Journal ArticleDOI

Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown

TL;DR: A simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes and to directly address the issue of multiple-shell transport.
Journal ArticleDOI

Extraordinary Mobility in Semiconducting Carbon Nanotubes

TL;DR: In this article, a carbon nanotube transistors with channel lengths exceeding 300 microns have been fabricated, where the carrier transport is diffusive and the channel resistance dominates the transport.
Journal ArticleDOI

High-field electrical transport in single-wall carbon nanotubes

TL;DR: The intrinsic high-field transport properties of metallic single-wall carbon nanotubes are measured using low-resistance electrical contacts and it is shown that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.
Related Papers (5)