scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure

29 Sep 2021-Nanophotonics (Walter de Gruyter GmbH)-Vol. 10, Iss: 16, pp 4045-4055
About: This article is published in Nanophotonics.The article was published on 2021-09-29 and is currently open access. It has received 4 citations till now. The article focuses on the topics: Substrate (chemistry) & Raman scattering.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a super-hydrophilic SERS sensor is established by loading plasmonic Au nanoparticles (NPs) on two-dimensional (2D) hexagonal boron nitride (h-BN) then the hybrids uniformly are grafted into 3D bacterial nanocelluloses (BNCs).

5 citations

Journal ArticleDOI
TL;DR: In this paper , two core-satellite nanostructures of metal oxide/metal nanoparticles were successfully introduced into SERS substrates, assembling monodispersed small silver nanoparticles (Ag NPs) on large polydispersed ZnO nanospheres (p-ZnO NSs) or monodispersevered ZnNO nanosphere core.
Abstract: Recently, hierarchical hybrid structures based on the combination of semiconductor micro/nanostructures and noble metal nanoparticles have become a hot research topic in the area of surface-enhanced Raman scattering (SERS). In this work, two core-satellite nanostructures of metal oxide/metal nanoparticles were successfully introduced into SERS substrates, assembling monodispersed small silver nanoparticles (Ag NPs) on large polydispersed ZnO nanospheres (p-ZnO NSs) or monodispersed ZnO nanospheres (m-ZnO NSs) core. The p-ZnO NSs and m-ZnO NSs were synthesized by the pyrolysis method without any template. The Ag NPs were prepared by the thermal evaporation method without any annealing process. An ultralow limit of detection (LOD) of 1 × 10−13 M was achieved in the two core-satellite nanostructures with Rhodamine 6G (R6G) as the probe molecule. Compared with the silicon (Si)/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates have higher enhancement factors (EF) of 2.6 × 108 and 2.5 × 108 for R6G as the probe molecule due to the enhanced electromagnetic field. The two core-satellite nanostructures have great application potential in the low-cost massive production of large-area SERS substrates due to their excellent SERS effect and simple preparation process without any template.

4 citations

Journal ArticleDOI
TL;DR: A review of many types of SERS sensors for food safety and environmental pollution monitoring based on detecting rhodamine is presented in this article , which introduces the basic concepts of substrates, enhancement factors, and mechanisms, devices sensors integrated with the microstructure.
Abstract: This article presents a review of many types of SERS sensors for food safety and environmental pollution monitoring based on detecting rhodamine. It introduces the basic concepts of substrates, enhancement factors, and mechanisms, devices’ sensors integrated with the microstructure. Here, we review the state-of-the-art research in the field of rhodamine monitoring and highlight the applications of SERS sensors. The trends in the development of substrates for different applications have been mentioned with the aim of providing an overview of the development of different SERS substrates. Thus, an efficient approach for rhodamine detection has a good perspective for application in environmental monitoring.

2 citations

Journal ArticleDOI
TL;DR: In this article , a flexible and transparent SERS substrate based on a wrinkled polydimethylsiloxane (PDMS) film obtained by transferring corrugated structures on the aluminium/polystyrene bilayer film, onto which silver nanoparticles (Ag NPs) are deposited by thermal evaporation.
Abstract: Flexible surface-enhanced Raman spectroscopy (SERS) substrate has attracted great attention due to its convenient sampling and on-site monitoring capability. However, it is still challenging to fabricate a versatile flexible SERS substrate, which can be used for in situ detection of analytes either in water or on irregular solid surfaces. Here, we report a flexible and transparent SERS substrate based on a wrinkled polydimethylsiloxane (PDMS) film obtained by transferring corrugated structures on the aluminium/polystyrene bilayer film, onto which silver nanoparticles (Ag NPs) are deposited by thermal evaporation. The as-fabricated SERS substrate exhibits a high enhancement factor (∼1.19×105), good signal uniformity (RSD of 6.27%), and excellent batch-to-batch reproducibility (RSD of 7.3%) for rhodamine 6 G. In addition, the Ag NPs@W-PDMS film can maintain high detection sensitivity even after mechanical deformations of bending or torsion for 100 cycles. More importantly, being flexible, transparent, and light, the Ag NPs@W-PDMS film can both float on the water surface and conformally contact with the curved surface for in situ detection. The malachite green in aqueous environment and on apple peel can be easily detected down to 10-6 M with a portable Raman spectrometer. Therefore, it is expected that such a versatile flexible SERS substrate has great potential in on-site, in situ contaminant monitoring for realistic applications.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, the SERS enhancement factor, EFSERS, is optimized when the energy of localized surface plasmon resonance (LSPR) lies between energy of the excitation wavelength and the vibrational band of interest.
Abstract: Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the sensitive and selective detection of low-concentration analytes. This paper includes a discussion of the early history of SERS, the concepts that must be appreciated to optimize the intensity of SERS and the development of SERS-based sensors. In order to achieve the lowest limits of detection, both the relationship between surface nanostructure and laser excitation wavelength, as well as the analyte/surface binding chemistry, must be carefully optimized. This work exploits the highly tunable nature of nanoparticle optical properties to establish the first set of optimization conditions. The SERS enhancement factor, EFSERS, is optimized when the energy of the localized surface plasmon resonance (LSPR) lies between the energy of the excitation wavelength and the energy of the vibrational band of interest. With the narrow LSPRs used in this work, it is straightforward to achieve EFSERS ∼ 108. These optimization conditions were exploited to develop SERS-based sensors for two important target molecules: a Bacillus anthracis biomarker and glucose in a serum protein mixture. Using these optimized film-over-nanosphere surfaces, an inexpensive, portable Raman spectrometer was used successfully to detect the infectious dose of Bacillus subtilis spores with only a 5-s data collection. The biomarker used to detect the Bacillus subtilis spores binds irreversibly to SERS substrates, whereas other important biomolecules, such as glucose, do not have any measurable binding affinity to a bare silver surface. To overcome this difficulty, a biocompatible partition layer was self-assembled on the SERS substrate before exposure to the analyte solution. Using the partition layer approach to concentrate glucose near the SERS-active substrate, physiological glucose concentrations can be detected even in the presence of interfering serum proteins. Copyright © 2005 John Wiley & Sons, Ltd.

348 citations

Journal ArticleDOI
TL;DR: An international team of scientists with long‐standing expertise in SERS is presented by presenting considerations on reliable and quantitative SERS to increase the inter‐laboratory comparability of experimental SERS results and further establish SERS as an analytical tool.
Abstract: Experimental results obtained in different laboratories world-wide by researchers using surface-enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long-standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature. To that end, we provide here a series of recommendations on: a) the characterization of solid and colloidal SERS substrates by correlative electron and optical microscopy and spectroscopy, b) on the determination of the SERS enhancement factor (EF), including suitable Raman reporter/probe molecules, and finally on c) good analytical practice. We hope that both newcomers and specialists will benefit from these recommendations to increase the inter-laboratory comparability of experimental SERS results and further establish SERS as an analytical tool.

258 citations

Journal ArticleDOI
TL;DR: A bio-inspired flexible surface enhanced Raman spectroscopy (SERS) sensor for malachite green (MG) detection has been fabricated by coating Ag on a structured surface of polydimethylsiloxane (PDMS) substrate using textured nano/microstructured Taro leaf as template.
Abstract: A bio-inspired flexible surface enhanced Raman spectroscopy (SERS) sensor for malachite green (MG) detection has been fabricated by coating Ag on a structured surface of polydimethylsiloxane (PDMS) substrate using textured nano/microstructured Taro leaf as template. The Ag-coated microcavity structured PDMS exhibits high adhesion, hydrophobic behavior (water contact angle ∼128 ± 1°) and serves as a concentrator for the analyte/probe molecule responsible for enhanced SERS intensity. The SERS activity of the fabricated Ag/PDMS flexible sensor having MG as probe molecules shows an enhancement factor of ∼2.06 × 10 5 over bulk MG molecules. The fabricated SERS sensor is showed the high sensitivity and good signal reproducibility. Sensitivity for very low MG concentration (∼10 −11 M) is reported which is attributed to the presence of high local field produced by Ag granular film and nanovoids onto PDMS surface. AFM and Raman characterizations have revealed the formation of nanovoids on Ag/PDMS structures to create plasmonic hotspots that results in enhanced SERS activity and high sensitivity. Further, the SERS signal under bending strain (tested between 180° and 100° bending), is also detectable for very low concentration of MG (as low as 10 −7 M) even at substrate bending angles of 100° that establishes the proposed SERS sensor system as an exceptional candidate for flexible MG SERS sensor applications.

152 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper designed a pyroelectric nanogenerator by absorbing optical energy as surface enhanced Raman scattering (SERS) substrate for in-situ monitoring the complete oxidation reaction from 4-aminothiophenol (4-ATP) to 4-nitrothiophenolate (NTP) and the oxygen reduction reaction (ORR) intermediates.

144 citations

Journal ArticleDOI
TL;DR: It was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers, and the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.
Abstract: We report a three-dimensional (3D) SERS substrate with different numbers of silver nanoparticle (Ag NP) layers using multilayer graphene oxide (GO) as a spacer. The SERS performance of the 3D nanostructure was investigated and it was found that the SERS effect increased as the number of Ag NP layers increased, and showed almost no change for more than four layers. We found that the SERS performance of the 3D nanostructures can be mainly attributed to the topmost hot spots which are closely related to the Ag NP layers in the 3D nanostructure. Furthermore, we explored 3D nanostructures with different Ag NP layers using the finite difference time domain method (FDTD). The 3D SERS substrates also exhibit excellent detection capability. The limit of detection (LOD) was calculated down to 10−15 M for R6G and 10−12 M for CV. In addition, the reproducibility of the 3D SERS substrate was attributed obviously to the increasing number of Ag NP layers. Based on these promising results, the highly sensitive detection of molecules such as malachite green was demonstrated for food safety inspection.

142 citations