scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-performance lithium battery anodes using silicon nanowires

01 Jan 2008-Nature Nanotechnology (Nature Publishing Group)-Vol. 3, Iss: 1, pp 31-35
TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Abstract: There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Abstract: The challenges for further development of Li rechargeable batteries for electric vehicles are reviewed. Most important is safety, which requires development of a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) or a constituent (or additive) that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery. A high Li-ion conductivity (σ Li > 10 ―4 S/cm) in the electrolyte and across the electrode/ electrolyte interface is needed for a power battery. Important also is an increase in the density of the stored energy, which is the product of the voltage and capacity of reversible Li insertion/extraction into/from the electrodes. It will be difficult to design a better anode than carbon, but carbon requires formation of an SEI layer, which involves an irreversible capacity loss. The design of a cathode composed of environmentally benign, low-cost materials that has its electrochemical potential μ C well-matched to the HOMO of the electrolyte and allows access to two Li atoms per transition-metal cation would increase the energy density, but it is a daunting challenge. Two redox couples can be accessed where the cation redox couples are "pinned" at the top of the O 2p bands, but to take advantage of this possibility, it must be realized in a framework structure that can accept more than one Li atom per transition-metal cation. Moreover, such a situation represents an intrinsic voltage limit of the cathode, and matching this limit to the HOMO of the electrolyte requires the ability to tune the intrinsic voltage limit. Finally, the chemical compatibility in the battery must allow a long service life.

8,535 citations

Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations

Journal ArticleDOI
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

4,105 citations

References
More filters
Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Abstract: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

7,404 citations

Journal ArticleDOI
09 Mar 2001-Science
TL;DR: The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures, which could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides.
Abstract: Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.

5,677 citations

Journal ArticleDOI
09 Jan 1998-Science
TL;DR: Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.
Abstract: A method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth was developed for the synthesis of semiconductor nanowires. In this process, laser ablation was used to prepare nanometer-diameter catalyst clusters that define the size of wires produced by VLS growth. This approach was used to prepare bulk quantities of uniform single-crystal silicon and germanium nanowires with diameters of 6 to 20 and 3 to 9 nanometers, respectively, and lengths ranging from 1 to 30 micrometers. Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.

4,405 citations

Journal ArticleDOI
TL;DR: In this paper, the capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992) and a ligand shell dielectric constant of 3.14 aF.
Abstract: nanoparticles in dimethylsulfoxide onto the PLL film for about 20 min, after which it was rinsed in dimethylsulfoxide and then dichloromethane. From the molecular weight, the average length of the PLL is about 30 nm. Therefore, each polymer can accommodate about seven or eight nanoparticles. [20] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, J. F. W. Keana, Appl. Phys. Lett. 1997, 71, 617. [21] A. A. Middleton, N. S. Wingreen, Phys. Rev. Lett. 1993, 71, 3198. [22] G. Y. Hu, R. F. O'Connell, Phys. Rev. B 1994, 49, 16 773. [23] A. J. Rimberg, T. R. Ho, J. Clarke, Phys. Rev. Lett. 1995, 74, 4714. [24] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, L. O. Brown, J. Hutchison, J. F. W. Keana, J. Vac. Sci. Technol. B 1997, 15, 2925. [25] The capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992). We used the nanoparticle dimensions given in the text and a ligand shell dielectric constant of 3. For nanoclusters away from the end of the chains we obtain Cdd » 0.04 aF and Cg » 0.17 aF. As expected, the value of Cg is slightly larger than the value calculated for an isolated metal sphere of radius a coated with a dielectric shell, Cg» (4pee0a)/(1 + (a/d)(e±1)) = 0.14 aF, where d is the total radius of the core plus ligand shell. [26] Simulations were carried out using both MOSES (Monte-Carlo SingleElectronics Simulator, R. H. Chen) and SIMON (Simulation of Nano Structures, C. Wasshuber). [27] S. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetton, Science 1998, 280, 2098. [28] L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter, M. Jonson, Phys. Rev. Lett. 1998, 80, 4526. [29] O. D. Häberlen, S. C. Chung, M. Stener, N. Rösch, J. Chem. Phys. 1997, 106, 5189. [30] Y. Awakuni, J. H. Calderwood, J. Phys. D: Appl. Phys. 1972, 5, 1038. [31] G. Markovich, C. P. Collier, J. R. Heath, Phys. Rev. Lett. 1998, 80, 3807. [32] C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Hendrichs, J. R. Heath, Science 1997, 277, 1978. [33] N. Mott, Metal Insulator Transitions, Taylor and Francis, London 1990.

2,726 citations

Journal ArticleDOI
TL;DR: In this paper, a review of methodologies adopted for reducing the capacity fade observed in silicon-based anodes, discuss the challenges that remain in using silicon and siliconbased anode, and propose possible approaches for overcoming them.

2,372 citations