scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials

01 Sep 2017-Advanced Materials (John Wiley & Sons, Ltd)-Vol. 29, Iss: 35, pp 1701864
TL;DR: This work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications.
Abstract: Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm-3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an artificial nano-composite with excellent comprehensive performance by controlling the orientation of one-dimensional (1D) 0.5Ba(Zr0.7Ca0.2Ti0.3)TiO3 nanofibers (BZCT NFs) and adjusting the interaction between BZCTNFs and poly(vinylidene fluoride) (PVDF) matrix via SiO2 buffer layer was proposed.

279 citations

Journal ArticleDOI
TL;DR: The integration of excellent performance, versatility, high productivity, low cost, and environmental friendliness in the present method offers an unprecedented opportunity for the development of scalable high-temperature polymer dielectrics.
Abstract: High-temperature capability is critical for polymer dielectrics in the next-generation capacitors demanded in harsh-environment electronics and electrical-power applications. It is well recognized that the energy-storage capabilities of dielectrics are degraded drastically with increasing temperature due to the exponential increase of conduction loss. Here, a general and scalable method to enable significant improvement of the high-temperature capacitive performance of the current polymer dielectrics is reported. The high-temperature capacitive properties in terms of discharged energy density and the charge-discharge efficiency of the polymer films coated with SiO2 via plasma-enhanced chemical vapor deposition significantly outperform the neat polymers and rival or surpass the state-of-the-art high-temperature polymer nanocomposites that are prepared by tedious and low-throughput methods. Moreover, the surface modification of the dielectric films is carried out in conjunction with fast-throughput roll-to-roll processing under ambient conditions. The entire fabrication process neither involves any toxic chemicals nor generates any hazardous by-products. The integration of excellent performance, versatility, high productivity, low cost, and environmental friendliness in the present method offers an unprecedented opportunity for the development of scalable high-temperature polymer dielectrics.

253 citations

Journal ArticleDOI
Mengfan Guo1, Jianyong Jiang1, Zhonghui Shen1, Yuanhua Lin1, Ce-Wen Nan1, Yang Shen1 
TL;DR: In this paper, the authors reviewed the recent advances on improving the energy density of PVDF-based composite dielectrics and concluded that, promotion of energy density is mainly established on enhanced breakdown strength and improved discharge efficiency.

230 citations

References
More filters
Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations

Journal ArticleDOI
TL;DR: HBN is shown to be a promising material for compact ultraviolet laser devices because it has a direct bandgap in the ultraviolet region and evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided.
Abstract: The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.

2,550 citations

Journal ArticleDOI
TL;DR: The large area synthesis of h-BN films consisting of two to five atomic layers, using chemical vapor deposition, show a large optical energy band gap of 5.5 eV and are highly transparent over a broad wavelength range.
Abstract: Hexagonal boron nitride (h-BN), a layered material similar to graphite, is a promising dielectric. Monolayer h-BN, so-called "white graphene", has been isolated from bulk BN and could be useful as a complementary two-dimensional dielectric substrate for graphene electronics. Here we report the large area synthesis of h-BN films consisting of two to five atomic layers, using chemical vapor deposition. These atomic films show a large optical energy band gap of 5.5 eV and are highly transparent over a broad wavelength range. The mechanical properties of the h-BN films, measured by nanoindentation, show 2D elastic modulus in the range of 200-500 N/m, which is corroborated by corresponding theoretical calculations.

2,362 citations

Journal ArticleDOI
21 Jul 2006-Science
TL;DR: It is demonstrated that a very high energy density with fast discharge speed and low loss can be obtained in defect-modified poly(vinylidene fluoride) polymers by combining nonpolar and polar molecular structural changes of the polymer with the proper dielectric constants.
Abstract: Dielectric polymers with high dipole density have the potential to achieve very high energy density, which is required in many modern electronics and electric systems. We demonstrate that a very high energy density with fast discharge speed and low loss can be obtained in defect-modified poly(vinylidene fluoride) polymers. This is achieved by combining nonpolar and polar molecular structural changes of the polymer with the proper dielectric constants, to avoid the electric displacement saturation at electric fields well below the breakdown field. The results indicate that a very high dielectric constant may not be desirable to reach a very high energy density.

2,008 citations