scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites

01 Mar 2013-Advanced Energy Materials (WILEY‐VCH Verlag)-Vol. 3, Iss: 3, pp 342-348
TL;DR: In this article, the authors report dimensionless thermoelectric properties of tetrahedrites, the most widespread sulfosalts on Earth, and further show that the natural mineral itself can be used directly as an inexpensive source of energy.
Abstract: Thermoelectric materials can convert waste heat into electricity, potentially improving the effi ciency of energy usage in both industry and everyday life. Unfortunately, known good thermoelectric materials often are comprised of elements that are in low abundance and require careful doping and complex synthesis procedures. Here, we report dimensionless thermoelectric fi gure of merit near unity in compounds of the form Cu 12 − x M x Sb 4 S 13 , where M is a transition metal such as Zn or Fe, for wide ranges of x . The compounds investigated here span the range of compositions of the natural mineral family of tetrahedrites, the most widespread sulfosalts on Earth, and we further show that the natural mineral itself can be used directly as an inexpensive source thermoelectric material. Thermoelectrics comprised of earth-abundant elements will pave the way to many new, low cost thermoelectric energy generation opportunities.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review describes the recent advances in designing high-performance bulk thermoelectric materials and highlights the decoupling of the electron and phonon transport through coherent interface, matrix/precipitate electronic bands alignment, and compositionally alloyed nanostructures.
Abstract: There has been a renaissance of interest in exploring highly efficient thermoelectric materials as a possible route to address the worldwide energy generation, utilization, and management. This review describes the recent advances in designing high-performance bulk thermoelectric materials. We begin with the fundamental stratagem of achieving the greatest thermoelectric figure of merit ZT of a given material by carrier concentration engineering, including Fermi level regulation and optimum carrier density stabilization. We proceed to discuss ways of maximizing ZT at a constant doping level, such as increase of band degeneracy (crystal structure symmetry, band convergence), enhancement of band effective mass (resonant levels, band flattening), improvement of carrier mobility (modulation doping, texturing), and decrease of lattice thermal conductivity (synergistic alloying, second-phase nanostructuring, mesostructuring, and all-length-scale hierarchical architectures). We then highlight the decoupling of th...

1,469 citations

Journal ArticleDOI
29 Sep 2017-Science
TL;DR: The mechanisms and strategies for improving thermoelectric efficiency are reviewed and how to report material performance is discussed, as well as how to develop high-performance materials out of nontoxic and earth-abundant elements.
Abstract: BACKGROUND Heat and electricity are two forms of energy that are at opposite ends of a spectrum Heat is ubiquitous, but with low quality, whereas electricity is versatile, but its production is demanding Thermoelectrics offers a simple and environmentally friendly solution for direct heat-to-electricity conversion A thermoelectric (TE) device can directly convert heat emanating from the Sun, radioisotopes, automobiles, industrial sectors, or even the human body to electricity Electricity also can drive a TE device to work as a solid-state heat pump for distributed spot-size refrigeration TE devices are free of moving parts and feasible for miniaturization, run quietly, and do not emit greenhouse gasses The full potential of TE devices may be unleashed by working in tandem with other energy-conversion technologies Thermoelectrics found niche applications in the 20th century, especially where efficiency was of a lower priority than energy availability and reliability Broader (beyond niche) application of thermoelectrics in the 21st century requires developing higher-performance materials The figure of merit, ZT, is the primary measure of material performance Enhancing the ZT requires optimizing the adversely interdependent electrical resistivity, Seebeck coefficient, and thermal conductivity, as a group On the microscopic level, high material performance stems from a delicate concert among trade-offs between phase stability and instability, structural order and disorder, bond covalency and ionicity, band convergence and splitting, itinerant and localized electronic states, and carrier mobility and effective mass ADVANCES Innovative transport mechanisms are the fountain of youth of TE materials research In the past two decades, many potentially paradigm-changing mechanisms were identified, eg, resonant levels, modulation doping, band convergence, classical and quantum size effects, anharmonicity, the Rashba effect, the spin Seebeck effect, and topological states These mechanisms embody the current states of understanding and manipulating the interplay among the charge, lattice, orbital, and spin degrees of freedom in TE materials Many strategies were successfully implemented in a wide range of materials, eg, V2VI3 compounds, VVI compounds, filled skutterudites and clathrates, half-Heusler alloys, diamond-like structured compounds, Zintl phases, oxides and mixed-anion oxides, silicides, transition metal chalcogenides, and organic materials In addition, advanced material synthesis and processing techniques, for example, melt spinning, self-sustaining heating synthesis, and field-assisted sintering, helped reach a much broader phase space where traditional metallurgy and melt-growth recipes fell short Given the ubiquity of heat and the modular aspects of TE devices, these advances ensure that thermoelectrics plays an important role as part of a solutions package to address our global energy needs OUTLOOK The emerging roles of spin and orbital states, new breakthroughs in multiscale defect engineering, and controlled anharmonicity may hold the key to developing next generation TE materials To accelerate exploring the broad phase space of higher multinary compounds, we need a synergy of theory, machine learning, three-dimensional printing, and fast experimental characterizations We expect this synergy to help refine current materials selection and make TE materials research more data driven We also expect increasing efforts to develop high-performance materials out of nontoxic and earth-abundant elements The desire to move away from Freon and other refrigerant-based cooling should shift TE materials research from power generation to solid-state refrigeration International round-robin measurements to cross-check the high ZT values of emerging materials will help identify those that hold the most promise We hope the renewable energy landscape will be reshaped if the recent trend of progress continues into the foreseeable future

1,457 citations


Cites background from "High Performance Thermoelectricity ..."

  • ...In Cu12Sb4S13 tetrahedrite, Cu atoms occupy two distinct crystallographic sites at a 50:50 ratio (117)....

    [...]

Journal ArticleDOI
TL;DR: Novel concepts and paradigms are described here that have emerged, targeting superior TE materials and higher TE performance, including band convergence, "phonon-glass electron-crystal", multiscale phonon scattering, resonant states, anharmonicity, etc.
Abstract: The past two decades have witnessed the rapid growth of thermoelectric (TE) research. Novel concepts and paradigms are described here that have emerged, targeting superior TE materials and higher TE performance. These superior aspects include band convergence, "phonon-glass electron-crystal", multiscale phonon scattering, resonant states, anharmonicity, etc. Based on these concepts, some new TE materials with distinct features have been identified, including solids with high band degeneracy, with cages in which atoms rattle, with nanostructures at various length scales, etc. In addition, the performance of classical materials has been improved remarkably. However, the figure of merit zT of most TE materials is still lower than 2.0, generally around 1.0, due to interrelated TE properties. In order to realize an "overall zT > 2.0," it is imperative that the interrelated properties are decoupled more thoroughly, or new degrees of freedom are added to the overall optimization problem. The electrical and thermal transport must be synergistically optimized. Here, a detailed discussion about the commonly adopted strategies to optimize individual TE properties is presented. Then, four main compromises between the TE properties are elaborated from the point of view of the underlying mechanisms and decoupling strategies. Finally, some representative systems of synergistic optimization are also presented, which can serve as references for other TE materials. In conclusion, some of the newest ideas for the future are discussed.

1,014 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermoelectric properties, applications and parameter relationships is presented, including modifications of electronic band structures and band convergence to enhance Seebeck coefficients; nanostructuring and all-scale hierarchical architecturing to reduce the lattice thermal conductivity.

866 citations

Journal ArticleDOI
TL;DR: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility.
Abstract: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), en...

636 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

57,691 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

32,798 citations

Journal ArticleDOI
11 Oct 2001-Nature
TL;DR: Th thin-film thermoelectric materials are reported that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys, and the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications.
Abstract: Thermoelectric materials are of interest for applications as heat pumps and power generators. The performance of thermoelectric devices is quantified by a figure of merit, ZT, where Z is a measure of a material's thermoelectric properties and T is the absolute temperature. A material with a figure of merit of around unity was first reported over four decades ago, but since then-despite investigation of various approaches-there has been only modest progress in finding materials with enhanced ZT values at room temperature. Here we report thin-film thermoelectric materials that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys. This amounts to a maximum observed factor of approximately 2.4 for our p-type Bi2Te3/Sb2Te3 superlattice devices. The enhancement is achieved by controlling the transport of phonons and electrons in the superlattices. Preliminary devices exhibit significant cooling (32 K at around room temperature) and the potential to pump a heat flux of up to 700 W cm-2; the localized cooling and heating occurs some 23,000 times faster than in bulk devices. We anticipate that the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications: for example, in thermochemistry-on-a-chip, DNA microarrays, fibre-optic switches and microelectrothermal systems.

4,921 citations

Journal ArticleDOI
02 May 2008-Science
TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Abstract: The dimensionless thermoelectric figure of merit (ZT) in bismuth antimony telluride (BiSbTe) bulk alloys has remained around 1 for more than 50 years. We show that a peak ZT of 1.4 at 100°C can be achieved in a p-type nanocrystalline BiSbTe bulk alloy. These nanocrystalline bulk materials were made by hot pressing nanopowders that were ball-milled from crystalline ingots under inert conditions. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, ZT is about 1.2 at room temperature and 0.8 at 250°C, which makes these materials useful for cooling and power generation. Cooling devices that use these materials have produced high-temperature differences of 86°, 106°, and 119°C with hot-side temperatures set at 50°, 100°, and 150°C, respectively. This discovery sets the stage for use of a new nanocomposite approach in developing high-performance low-cost bulk thermoelectric materials.

4,695 citations