scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-resolution aliasing-free optical beam steering

20 Aug 2016-Vol. 3, Iss: 8, pp 887-890
TL;DR: In this paper, a two-axis steerable optical phased array with over 500 resolvable spots and 80° steering in the phased array axis (measurement limited) and a record small divergence in both axes (0.14°).
Abstract: Many applications, including laser (LIDAR) mapping, free-space optical communications, and spatially resolved optical sensors, demand compact, robust solutions to steering an optical beam. Fine target addressability (high steering resolution) in these systems requires simultaneously achieving a wide steering angle and a small beam divergence, but this is difficult due to the fundamental trade-offs between resolution and steering range. So far, to our knowledge, chip-based two-axis optical phased arrays have achieved a resolution of no more than 23 resolvable spots in the phased-array axis. Here we report, using non-uniform emitter spacing on a large-scale emitter array, a dramatically higher-performance two-axis steerable optical phased array fabricated in a 300 mm CMOS facility with over 500 resolvable spots and 80° steering in the phased-array axis (measurement limited) and a record small divergence in both axes (0.14°). Including the demonstrated steering range in the other (wavelength-controlled) axis, this amounts to two-dimensional beam steering to more than 60,000 resolvable points.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the first integrated silicon photonics optical phased array (OPA) receiver with imaging capabilities is presented, which can provide fully programmable angular selectivity with a grating-lobe-free field-of-view of 30° and a gazing beamwidth of 0.74°.
Abstract: This paper presents the first integrated silicon photonics optical phased array (OPA) receiver with imaging capabilities. A 32-element 1D OPA with an overall aperture size of 96x50 μm^2 is used to generate an electrically steerable “gazing beam”. The OPA receiver elements couple the incident light to on-chip waveguides which is processed as a phased array receiver. To minimize signal loss and enhance sensitivity, a heterodyne architecture with phase shifters in the local reference path is utilized. The OPA receiver can provide fully programmable angular selectivity with a grating-lobe-free field-of-view of 30° and a gazing beamwidth of 0.74°.

15 citations

Journal ArticleDOI
TL;DR: It is shown that it is possible to realize high-quality beam steering even when the pixel performance is non-ideal, with intensity of the secondary lobes two orders of magnitude smaller than the main lobe.
Abstract: Optical phased arrays are of strong interest for beam steering in telecom and LIDAR applications. A phased array ideally requires that the field produced by each element in the array (a pixel) is fully controllable in phase and amplitude (ideally constant). This is needed to realize a phase gradient along a direction in the array, and thus beam steering in that direction. In practice, grating lobes appear if the pixel size is not sub-wavelength, which is an issue for many optical technologies. Furthermore, the phase performance of an optical pixel may not span the required $2\pi$ phase range, or may not produce a constant amplitude over its phase range. These limitations result in imperfections in the phase gradient, which in turn introduce undesirable secondary lobes. We discuss the effects of non-ideal pixels on beam formation, in a general and technology-agnostic manner. By examining the strength of secondary lobes with respect to the main lobe, we quantify beam steering quality, and make recommendations on the pixel performance required for beam steering within prescribed specifications. By applying appropriate compensation strategies, we show that it is possible to realize high-quality beam steering even when the pixel performance is non-ideal, with intensity of the secondary lobes be two orders of magnitude smaller than the main lobe.

15 citations

Journal ArticleDOI
TL;DR: In this article, a polymer waveguide OPA with the advantages of low driving power and high optical throughput is proposed, which enables sustainable phase distribution control during beam scanning, which reduces the burden of beamforming.
Abstract: Optical phased array (OPA) devices are being actively investigated to develop compact solid-state beam scanners, which are essential in fields such as LiDAR, free-space optical links, biophotonics, etc. Based on the unique nature of perfluorinated polymers, we propose a polymer waveguide OPA with the advantages of low driving power and high optical throughput. Unlike silicon photonic OPAs, the polymer OPAs enable sustainable phase distribution control during beam scanning, which reduces the burden of beamforming. Moreover, by incorporating a tunable wavelength laser comprising a polymer waveguide Bragg reflector, two-dimensional beam scanning is demonstrated, which facilitates the development of laser-integrated polymeric OPA beam scanners.

14 citations

Journal ArticleDOI
TL;DR: In this paper, a highly directional waveguide grating antenna by patterning top cladding has been proposed, where spatial separation of the grating structure from the waveguide reduces the strength of perturbation to achieve millimeter-scale emission.

14 citations

Journal ArticleDOI
TL;DR: In this article, the largest-scale InP-based beam-steering module is presented, which consists of 100 waveguides with carrier-injection-based phase shifters, densely integrated on 7 mm $\times5$ mm footprint.
Abstract: High-speed and robust optical beam-steering device will be the key component for various applications, such as LiDAR (light detection and ranging) and free-space optical communication. Optical phased arrays (OPAs) integrated on semiconductor chips have recently received increasing attention due to the high-speed operation, compactness, and low cost. In particular, indium phosphide (InP)-based OPAs are advantageous for high-output-power applications at 1.55- $\mu \text{m}$ eye-safe wavelength, owing to their capability of monolithically integrating active components, such as high-power lasers and optical amplifiers. In this letter, we design and fabricate, to the best of our knowledge, the largest-scale InP-based OPA and experimentally demonstrate its beam-steering operations. The fabricated OPA consists of 100 waveguides with carrier-injection-based phase shifters, densely integrated on 7 mm $\times5$ mm footprint. A focused beam width of 0.11° is steered across the free spectral range of 8.88°, corresponding to more than 80 resolvable points. This is the largest number of resolvable points obtained by a monolithic InP OPA. The response time of the OPA is confirmed to be less than 16 ns, which is limited by the driver circuit. This work paves the way for realizing compact beam-steering modules for high-speed and high-output-power imaging applications.

14 citations

References
More filters
Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
01 Aug 1998
TL;DR: The digital display engine (DDE) as discussed by the authors is based on a single DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train.
Abstract: A period of rapid growth and change in the display industry has recently given rise to many new display technologies. One such technology, the Digital Micromirror Device/sup TM/ (DMD), developed at Texas Instruments, represents a unique application of microelectromechanical systems to the area of projection displays. In this paper, we describe a representative example of a DMD-based projection display engine, the digital display engine (DDE). The DDE is based on a single-DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train. The engine is designed for portable and fixed conference-room graphics and video display applications, and many design decisions were made to tailor the engine for its intended venue. The design of the projection engine optics and electronics is discussed, along with the basic operation, manufacture, and reliability of the DMD itself.

642 citations

Journal ArticleDOI
TL;DR: A 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14° and full-window background peak suppression of 10 dB is demonstrated.
Abstract: We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB.

373 citations

Journal ArticleDOI
TL;DR: An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator in which continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.
Abstract: Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mum apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tuning. At a wavelength of 1550 nm, continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.

299 citations

Journal ArticleDOI
TL;DR: The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens and exhibited steering over 23° x 3.6°.
Abstract: In this work we present the first fully-integrated free-space beam-steering chip using the hybrid silicon platform. The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens. The PIC exhibited steering over 23° x 3.6° with beam widths of 1° x 0.6°.

283 citations