scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-resolution aliasing-free optical beam steering

20 Aug 2016-Vol. 3, Iss: 8, pp 887-890
TL;DR: In this paper, a two-axis steerable optical phased array with over 500 resolvable spots and 80° steering in the phased array axis (measurement limited) and a record small divergence in both axes (0.14°).
Abstract: Many applications, including laser (LIDAR) mapping, free-space optical communications, and spatially resolved optical sensors, demand compact, robust solutions to steering an optical beam. Fine target addressability (high steering resolution) in these systems requires simultaneously achieving a wide steering angle and a small beam divergence, but this is difficult due to the fundamental trade-offs between resolution and steering range. So far, to our knowledge, chip-based two-axis optical phased arrays have achieved a resolution of no more than 23 resolvable spots in the phased-array axis. Here we report, using non-uniform emitter spacing on a large-scale emitter array, a dramatically higher-performance two-axis steerable optical phased array fabricated in a 300 mm CMOS facility with over 500 resolvable spots and 80° steering in the phased-array axis (measurement limited) and a record small divergence in both axes (0.14°). Including the demonstrated steering range in the other (wavelength-controlled) axis, this amounts to two-dimensional beam steering to more than 60,000 resolvable points.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated a structure based on multi-layer Si3N4/SiO2 platform that can form a 3D OPA to emit the light from the edge of the device with high efficiency, a 2-D converged out-coupling beam will be end-fired to the air.
Abstract: Beam steering device such as optical phased array (OPA) is a key component in applications of solid-state Lidar and wireless communication. The traditional single-layer optical phased array (OPA) results in a significant energy loss due to the substrate leakage caused by the downward coupling from the grating coupler structure. In this work we have investigated a structure based on multi-layers Si3N4/SiO2 platform that can form a 3-D OPA to emit the light from the edge of the device with high efficiency, a 2-D converged out-coupling beam will be end-fired to the air. The high efficiency and wide horizontal beam steering are demonstrated numerically, the influence of vertical cross-talk, the delay length, number of waveguide layers, and the fabrication feasibility are also discussed.

11 citations

Journal ArticleDOI
TL;DR: The recent development of photonic integration technologies suitable for indoor OWC application is reviewed, and the current status and future opportunities of several key devices, such as the chip to free space couplers, integrated receivers and transmitters are discussed.
Abstract: Indoor optical wireless communication (OWC) using steerable infrared beams is regarded as an important component in future 5G network. Photonic integration technologies can meet the criteria of such application, and provide low-cost, high-performance and very compact chips. In this paper, we review the recent development of photonic integration technologies suitable for indoor OWC application, and discuss in detail the current status and future opportunities of several key devices, such as the chip to free space couplers, integrated receivers and transmitters.

10 citations

Journal ArticleDOI
TL;DR: Radio frequency phased array theory is demonstrated to be applicable to the description of the coupling conditions of the delocalized surface plasmons in optical phased arrays and thus the gap between the phased arrays at two distinctly different wavelengths can be bridged.
Abstract: Optical phased arrays have been demonstrated to enable a variety of applications ranging from high-speed on-chip communications to vertical surface emitting lasers. Despite the prosperities of the researches on optical phased arrays, presently, the reported designs of optical phased arrays are based on silicon photonics while plasmonic-based optical phased arrays have not been demonstrated yet. In this paper, a passive plasmonic optical phased array is proposed and experimentally demonstrated. The beam of the proposed plasmonic optical phased array is steerable in the far-field area and a high directivity can be achieved. In addition, radio frequency phased array theory is demonstrated to be applicable to the description of the coupling conditions of the delocalized surface plasmons in optical phased arrays and thus the gap between the phased arrays at two distinctly different wavelengths can be bridged. The potential applications of the proposed plasmonic phased arrays include on-chip optical wireless nanolinks, optical interconnections and integrated plasmonic lasers.

10 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a silicon PIC phased array beam steering based on thermally tuned ultracompact microring resonator phase shifters with a radius of a few microns.
Abstract: Photonic integrated circuit (PIC) phased arrays can be an enabling technology for a broad range of applications including free-space laser communications on compact moving platforms. However, scaling PIC phased arrays to a large number of array elements is limited by the large size and high power consumption of individual phase shifters used for beam steering. In this paper, we demonstrate silicon PIC phased array beam steering based on thermally tuned ultracompact microring resonator phase shifters with a radius of a few microns. These resonators integrated with micro-heaters are designed to be strongly coupled to an external waveguide, thereby providing a large and adjustable phase shift with a small residual amplitude modulation while consuming an average power of 0.4 mW. We also introduce near-field and far-field characterization techniques to enable the calibration and programming of resonator phase shifters in the phased array. With such compact phase shifters, we demonstrate beam steering with a 1x8 PIC phased array. The small size of these resonator phase shifters will enable low-power and ultra-large scale PIC phased arrays for long distance laser communication systems.

10 citations

References
More filters
Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
01 Aug 1998
TL;DR: The digital display engine (DDE) as discussed by the authors is based on a single DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train.
Abstract: A period of rapid growth and change in the display industry has recently given rise to many new display technologies. One such technology, the Digital Micromirror Device/sup TM/ (DMD), developed at Texas Instruments, represents a unique application of microelectromechanical systems to the area of projection displays. In this paper, we describe a representative example of a DMD-based projection display engine, the digital display engine (DDE). The DDE is based on a single-DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train. The engine is designed for portable and fixed conference-room graphics and video display applications, and many design decisions were made to tailor the engine for its intended venue. The design of the projection engine optics and electronics is discussed, along with the basic operation, manufacture, and reliability of the DMD itself.

642 citations

Journal ArticleDOI
TL;DR: A 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14° and full-window background peak suppression of 10 dB is demonstrated.
Abstract: We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB.

373 citations

Journal ArticleDOI
TL;DR: An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator in which continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.
Abstract: Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mum apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tuning. At a wavelength of 1550 nm, continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.

299 citations

Journal ArticleDOI
TL;DR: The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens and exhibited steering over 23° x 3.6°.
Abstract: In this work we present the first fully-integrated free-space beam-steering chip using the hybrid silicon platform. The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens. The PIC exhibited steering over 23° x 3.6° with beam widths of 1° x 0.6°.

283 citations