scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-resolution aliasing-free optical beam steering

20 Aug 2016-Vol. 3, Iss: 8, pp 887-890
TL;DR: In this paper, a two-axis steerable optical phased array with over 500 resolvable spots and 80° steering in the phased array axis (measurement limited) and a record small divergence in both axes (0.14°).
Abstract: Many applications, including laser (LIDAR) mapping, free-space optical communications, and spatially resolved optical sensors, demand compact, robust solutions to steering an optical beam. Fine target addressability (high steering resolution) in these systems requires simultaneously achieving a wide steering angle and a small beam divergence, but this is difficult due to the fundamental trade-offs between resolution and steering range. So far, to our knowledge, chip-based two-axis optical phased arrays have achieved a resolution of no more than 23 resolvable spots in the phased-array axis. Here we report, using non-uniform emitter spacing on a large-scale emitter array, a dramatically higher-performance two-axis steerable optical phased array fabricated in a 300 mm CMOS facility with over 500 resolvable spots and 80° steering in the phased-array axis (measurement limited) and a record small divergence in both axes (0.14°). Including the demonstrated steering range in the other (wavelength-controlled) axis, this amounts to two-dimensional beam steering to more than 60,000 resolvable points.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a universal active metasurface is proposed to provide independent and continuous control over all characteristic properties of light for deterministic wavefront shaping for optical imaging, communication, and computation applications.
Abstract: Abstract In recent years, active metasurfaces have emerged as a reconfigurable nanophotonic platform for the manipulation of light. Here, application of an external stimulus to resonant subwavelength scatterers enables dynamic control over the wavefront of reflected or transmitted light. In principle, active metasurfaces are capable of controlling key characteristic properties of an electromagnetic wave, such as its amplitude, phase, polarization, spectrum, and momentum. A ‘universal’ active metasurface should be able to provide independent and continuous control over all characteristic properties of light for deterministic wavefront shaping. In this article, we discuss strategies for the realization of this goal. Specifically, we describe approaches for high performance active metasurfaces, examine pathways for achieving two-dimensional control architectures, and discuss operating configurations for optical imaging, communication, and computation applications based on a universal active metasurface.

10 citations

Patent
22 Jul 2016
TL;DR: In this article, an optical sensor including a first material layer comprising at least one material, a second material layer consisting of compositions of the second material that vary along a direction that is from the first material to the second materials is presented.
Abstract: An optical sensor including a first material layer comprising at least a first material; a second material layer comprising at least a second material that is different from the first material, where a material bandgap of the first material is larger than a material bandgap of the second material; and a graded material layer arranged between the first material layer and the second material layer, the graded material layer comprising an alloy of at least the first material and the second material having compositions of the second material that vary along a direction that is from the first material to the second material.

10 citations

Journal ArticleDOI
TL;DR: In this paper, a chip-scale germanium-silicon optical phased array (OPA) fabricated on a CMOS-compatible platform capable of 2D beam steering in the mid-infrared wavelength range was demonstrated.
Abstract: We demonstrate a chip-scale germanium-silicon optical phased array (OPA) fabricated on a CMOS-compatible platform capable of 2D beam steering in the mid-infrared wavelength range. The OPA included a specially designed grating emitter waveguide array with uniform emission intensity along the mm -length waveguide propagation to realize very sharp instantaneous field-of-view (IFOV) and wide beam-steering total-field-of-view (TFOV). The experimental results indicated lateral beam-steering TFOV up to 12.7° by phase-tuning the waveguide array and longitudinal TFOV up to 12° by wavelength tuning. The 3-dB beam divergence is 3.08° × 0.18°. The demonstrated OPA architecture can employ wafer-scale fabrication and integration while supporting sensing and imaging applications in the mid-infrared spectral range.

9 citations

Journal ArticleDOI
TL;DR: A novel electrically controlled beam steering chip based on coherently coupled vertical cavity surface emitting laser (VCSEL) array directly integrated with liquid crystal optical phased array (LCOPA) is proposed in this paper.
Abstract: Beam steering devices have wide applications in both military and civil fields. The ultimate goal for such devices is to reduce their size, weight, and power consumption. However, the laser source in these devices is spatially separate from the phase shifter, resulting in large size, complex packaging, and low coupling efficiency. To solve these problems, a novel electrically controlled beam steering chip based on coherently coupled vertical cavity surface emitting laser (VCSEL) array directly integrated with liquid crystal optical phased array (LCOPA) is proposed in this paper. Implant-defined in-phase coherently coupled VCSEL arrays (CCVAs) with uniform near-field are designed and fabricated first to act as the coherent laser source for the chip. Then, taking advantage of the CCVA planar structure, the LCOPA is integrated directly on the CCVA by conventional process. The coherent light generated by the in-phase CCVA is uniformly and normally incident into the LCOPA and is electrically steered by the LCOPA. One-dimensional beam steering is achieved by two proof-of-concept integrated chips. The chips based on a 4 × 4 square CCVA and a 16-element hexagonal CCVA offer a field of view of 2.21° and 6.06°, respectively. Independent control of the CCVA and LCOPA guarantees a relatively high wavelength stability and power stability. Theoretical calculations are also performed, which are consistent with the experiments.

9 citations

Journal ArticleDOI
TL;DR: The on-chip monitoring of far-field patterns in a silicon-based optical phased array (OPA) using a planar diffractor and traveling-wave photodetectors integrated at the end of the radiator array is demonstrated.
Abstract: We demonstrate the on-chip monitoring of far-field patterns in a silicon-based optical phased array (OPA) using a planar diffractor and traveling-wave photodetectors (PDs) integrated at the end of the radiator array. To reproduce the diffraction patterns within a silicon slab, the planar diffractor is designed with a diffraction region surrounded by an absorptive boundary and seven discrete outlet waveguides. Each outlet waveguide is linked to the photon-assisted tunneling PD which has a silicon p-n junction and is operated under a reverse bias to detect a sub-bandgap wavelength, 1.3 µm. With the 1×16 OPA and seven detectors, the positions of the main beams aligned to specific directions in the free space were clearly monitored.

9 citations

References
More filters
Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
01 Aug 1998
TL;DR: The digital display engine (DDE) as discussed by the authors is based on a single DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train.
Abstract: A period of rapid growth and change in the display industry has recently given rise to many new display technologies. One such technology, the Digital Micromirror Device/sup TM/ (DMD), developed at Texas Instruments, represents a unique application of microelectromechanical systems to the area of projection displays. In this paper, we describe a representative example of a DMD-based projection display engine, the digital display engine (DDE). The DDE is based on a single-DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train. The engine is designed for portable and fixed conference-room graphics and video display applications, and many design decisions were made to tailor the engine for its intended venue. The design of the projection engine optics and electronics is discussed, along with the basic operation, manufacture, and reliability of the DMD itself.

642 citations

Journal ArticleDOI
TL;DR: A 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14° and full-window background peak suppression of 10 dB is demonstrated.
Abstract: We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB.

373 citations

Journal ArticleDOI
TL;DR: An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator in which continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.
Abstract: Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mum apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tuning. At a wavelength of 1550 nm, continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.

299 citations

Journal ArticleDOI
TL;DR: The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens and exhibited steering over 23° x 3.6°.
Abstract: In this work we present the first fully-integrated free-space beam-steering chip using the hybrid silicon platform. The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens. The PIC exhibited steering over 23° x 3.6° with beam widths of 1° x 0.6°.

283 citations