scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-resolution aliasing-free optical beam steering

20 Aug 2016-Vol. 3, Iss: 8, pp 887-890
TL;DR: In this paper, a two-axis steerable optical phased array with over 500 resolvable spots and 80° steering in the phased array axis (measurement limited) and a record small divergence in both axes (0.14°).
Abstract: Many applications, including laser (LIDAR) mapping, free-space optical communications, and spatially resolved optical sensors, demand compact, robust solutions to steering an optical beam. Fine target addressability (high steering resolution) in these systems requires simultaneously achieving a wide steering angle and a small beam divergence, but this is difficult due to the fundamental trade-offs between resolution and steering range. So far, to our knowledge, chip-based two-axis optical phased arrays have achieved a resolution of no more than 23 resolvable spots in the phased-array axis. Here we report, using non-uniform emitter spacing on a large-scale emitter array, a dramatically higher-performance two-axis steerable optical phased array fabricated in a 300 mm CMOS facility with over 500 resolvable spots and 80° steering in the phased-array axis (measurement limited) and a record small divergence in both axes (0.14°). Including the demonstrated steering range in the other (wavelength-controlled) axis, this amounts to two-dimensional beam steering to more than 60,000 resolvable points.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the use of a relatively unexplored chemically amplified resist, SU-8 with EBL, was proposed as a method for rapid prototyping of low-index metasurfaces.
Abstract: The field of metasurface research has rapidly developed in the past decade. Electron-beam lithography (EBL) is an excellent tool used for rapid prototyping of metasurfaces. However, Gaussian-beam EBL generally struggles with low throughput. In conjunction with the recent rise of interest in metasurfaces made of low-index dielectric materials, we propose in this study the use of a relatively unexplored chemically amplified resist, SU-8 with EBL, as a method for rapid prototyping of low-index metasurfaces. We demonstrate the use of SU-8 grating on silicon for cost-efficient fabrication of an all-dielectric multilevel security print for anti-counterfeiting purposes, which encrypt different optical information with different light illumination conditions, namely, bright-field reflection, dark-field reflection, and cross-polarized reflection. The large-scale print (1 mm 2 ) could be exposed in a relatively short time (∼11 min ) due to the ultrahigh sensitivity of the resist, while the feature size of ∼200 nm was maintained, demonstrating that SU-8 EBL resist serves as a good candidate for rapid prototyping of metasurface designs. Our results could find applications in the general area of increasing EBL patterning speed for a variety of other devices and structures.

2 citations

Proceedings ArticleDOI
04 Mar 2019
TL;DR: In this article, a doubly periodic Si photonic crystal waveguide (PCW) with a collimator lens, which emits a single-peaked optical beam was used for beam steering in LiDARs.
Abstract: We have studied a Si photonics non-mechanical beam steering device for LiDARs. We exploit a doubly periodic Si photonic crystal waveguide (PCW) with a collimator lens, which emits a single-peaked optical beam. Thanks to the slow light effect in the PCW, wide range beam steering can be obtained in the longitudinal direction with maintaining a small beam divergence by a small change of the wavelength and/or index of the PCW. However, due to the symmetric crosssection of the PCW, the emission occurs in both upward and downward directions, which causes a 3-dB loss in the transmission of the optical beam. The downward beam is partly reflected by the substrate, and the reflected beam interferes with the upward beam and modifies the far field pattern, which further increases the loss at particular beam angles. In LiDARs, this loss is repeated at the reception of returned light, resulting in a severe loss penalty. In this study, we investigated the unidirectional upward emission in some PCW structures with vertical asymmetries. We found theoretically that a shallow etched grating on top of the Si layer, which overlaps with the PCW holes significantly increases the upward emission. We fabricated such a device using Si photonics CMOS process and observed 2-8 times stronger upward emission as compared with that of the symmetric PCW. Furthermore, we integrated 32 PCWs in parallel configuration and selected one working PCW so that its relative position against a collimator lens is switched and the beam is steered in the lateral direction. We observed over 400×32 resolution points.

2 citations

Journal ArticleDOI
TL;DR: A plane-wave generator which consists of a compact taper array and expands the aperture of the grating waveguide of optical leaky wave antenna, resulting in a high antenna gain is proposed and demonstrated.
Abstract: This paper proposes and demonstrates a plane-wave generator which consists of a compact taper array and expands the aperture of the grating waveguide (GWG) of optical leaky wave antenna, resulting in a high antenna gain. The device size is reduced to half of a conventional slow taper without degrading the aperture efficiency. We confirm the well correspondence of the antenna gain between the full numerical simulation and the estimation using measured parameters for the device fabricated by silicon photonics.

2 citations


Cites background from "High-resolution aliasing-free optic..."

  • ...other advanced applications such as light detection and ranging [1, 2, 3, 4, 5]....

    [...]

Journal ArticleDOI
TL;DR: In this article , an ultra-compact 8-channel sinusoidal silicon waveguide array for an optical phased array is presented. But the beamforming range and power consumption of the waveguide pitch is not considered.
Abstract: Here we demonstrate an ultra-compact 8-channel sinusoidal silicon waveguide array for an optical phased array. In our device, based on sinusoidal bending, the cross talk (CT) between waveguides can be efficiently reduced with a waveguide pitch of only 695 nm. For the transverse electric (TE) mode, the simulation results show that the insertion loss (IL) of the 100-µm-long device is 0.1 dB and the CT between all waveguides is lower than -25 dB at 1550 nm. In the measurements, an IL of less than 1 dB and CT lower than -18 dB are obtained. Since the pitch is related to the beam-steering range and power consumption of the optical phased array, such an ultra-compact device could potentially be a good candidate to build the emitter for an energy-efficient optical phased array with a large field of view.

2 citations

Proceedings ArticleDOI
05 May 2019
TL;DR: In this article, the first phase array operating at blue wavelengths was demonstrated, with wide-angle beam steering over a 50° field-of-view with a beam width of less than 0.17° using a high confinement silicon nitride waveguide platform.
Abstract: We demonstrate the first phased array operating at blue wavelengths. We show wide-angle beam steering over a 50° field-of-view with a beam width of less than 0.17° using a high confinement silicon nitride waveguide platform. © 2019 The Author(s)

2 citations


Cites background from "High-resolution aliasing-free optic..."

  • ...In order to achieve a wide field of view, we design a phased array with a sparse random layout of emitters (edge emitting waveguides) to eliminate the grating lobes that typically limit the field of view of periodically arranged emitter arrays which have a pitch greater than half-wavelength [2,10]....

    [...]

References
More filters
Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
01 Aug 1998
TL;DR: The digital display engine (DDE) as discussed by the authors is based on a single DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train.
Abstract: A period of rapid growth and change in the display industry has recently given rise to many new display technologies. One such technology, the Digital Micromirror Device/sup TM/ (DMD), developed at Texas Instruments, represents a unique application of microelectromechanical systems to the area of projection displays. In this paper, we describe a representative example of a DMD-based projection display engine, the digital display engine (DDE). The DDE is based on a single-DMD device having array dimensions of 800/spl times/600 elements, illuminated by a metal halide arc lamp through a compact optics train. The engine is designed for portable and fixed conference-room graphics and video display applications, and many design decisions were made to tailor the engine for its intended venue. The design of the projection engine optics and electronics is discussed, along with the basic operation, manufacture, and reliability of the DMD itself.

642 citations

Journal ArticleDOI
TL;DR: A 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14° and full-window background peak suppression of 10 dB is demonstrated.
Abstract: We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB.

373 citations

Journal ArticleDOI
TL;DR: An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator in which continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.
Abstract: Optical phased arrays are versatile components enabling rapid and precise beam steering. An integrated approach is followed in which a 1D optical phased array is fabricated on silicon-on-insulator. The optical phased array consists of 16 parallel grating couplers spaced 2 mum apart. Steering in one direction is done thermo-optically by means of a titanium electrode on top of the structure using the phased array principle, while steering in the other direction is accomplished by wavelength tuning. At a wavelength of 1550 nm, continuous thermo-optical steering of 2.3 degrees and wavelength steering of 14.1 degrees is reported.

299 citations

Journal ArticleDOI
TL;DR: The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens and exhibited steering over 23° x 3.6°.
Abstract: In this work we present the first fully-integrated free-space beam-steering chip using the hybrid silicon platform. The photonic integrated circuit (PIC) consists of 164 optical components including lasers, amplifiers, photodiodes, phase tuners, grating couplers, splitters, and a photonic crystal lens. The PIC exhibited steering over 23° x 3.6° with beam widths of 1° x 0.6°.

283 citations