scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High-Resolution Inkjet Printing of All-Polymer Transistor Circuits

15 Dec 2000-Science (American Association for the Advancement of Science)-Vol. 290, Iss: 5499, pp 2123-2126
TL;DR: It is shown that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers, and high mobilities were achieved.
Abstract: Direct printing of functional electronic materials may provide a new route to low-cost fabrication of integrated circuits. However, to be useful it must allow continuous manufacturing of all circuit components by successive solution deposition and printing steps in the same environment. We demonstrate direct inkjet printing of complete transistor circuits, including via-hole interconnections based on solution-processed polymer conductors, insulators, and self-organizing semiconductors. We show that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers. High mobilities of 0.02 square centimeters per volt second and on-off current switching ratios of 10 5 were achieved.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations


Additional excerpts

  • ...One emerging patterning strategy is ink-jet printin...

    [...]

Journal ArticleDOI
TL;DR: This work demonstrates a top-gated graphene transistor that is able to reach doping levels of up to 5x1013 cm-2, which is much higher than those previously reported.
Abstract: The recent discovery of graphene has led to many advances in two-dimensional physics and devices. The graphene devices fabricated so far have relied on $SiO_2$ back gating. Electrochemical top gating is widely used for polymer transistors, and has also been successfully applied to carbon nanotubes. Here we demonstrate a top-gated graphene transistor that is able to reach doping levels of up to $5\times 10^{13} cm^{-2}$, which is much higher than those previously reported. Such high doping levels are possible because the nanometre-thick Debye layer in the solid polymer electrolyte gate provides a much higher gate capacitance than the commonly used $SiO_2$ back gate, which is usually about 300 nm thick. In situ Raman measurements monitor the doping. The G peak stiffens and sharpens for both electron and hole doping, but the 2D peak shows a different response to holes and electrons. The ratio of the intensities of the G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor the doping.

3,254 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

Journal ArticleDOI
TL;DR: The use of localized surface plasmon resonance (LSPR) spectroscopy to probe the size-tunable optical properties of Ag nanoparticles and their sensitivity to the local, external dielectric environment (viz., the nanoenvironment) is discussed in this article.
Abstract: Nanosphere lithography (NSL) is an inexpensive, simple to implement, inherently parallel, high throughput, materials general nanofabrication technique capable of producing an unexpectedly large variety of nanoparticle structures and well-ordered 2D nanoparticle arrays. This article describes our recent efforts to broaden the scope of NSL to include strategies for the fabrication of several new nanoparticle structural motifs and their characterization by atomic force microscopy. NSL has also been demonstrated to be well-suited to the synthesis of size-tunable noble metal nanoparticles in the 20−1000 nm range. This characteristic of NSL has been especially valuable for investigating the fascinating richness of behavior manifested in size-dependent nanoparticle optics. The use of localized surface plasmon resonance (LSPR) spectroscopy to probe the size-tunable optical properties of Ag nanoparticles and their sensitivity to the local, external dielectric environment (viz., the nanoenvironment) is discussed in...

2,422 citations

References
More filters
Journal ArticleDOI
14 Oct 1999-Nature
TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Abstract: Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix1. This has important consequences for electrical properties of these materials: charge transport is usually limited by the most difficult hopping processes and is therefore dominated by the disordered matrix, resulting in low charge-carrier mobilities2 (⩽10-5 cm2 V-1 s-1). Here we use thin-film, field-effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT. Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different orientations—parallel and normal to the substrate—the mobilities of which differ by more than a factor of 100, and can reach values as high as 0.1 cm2 V-1 s-1 (refs 3, 4). Optical spectroscopy of the field-induced charge, combined with the mobility anisotropy, reveals the two-dimensional interchain character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications of polymer transistors in logic circuits5 and active-matrix displays4,6.

4,306 citations

Journal ArticleDOI
12 Jun 1998-Science
TL;DR: An all-polymer semiconductor integrated device is demonstrated with a high-mobility conjugated polymer field-effect transistor driving a polymer light-emitting diode (LED) of similar size, which represents a step toward all- polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.
Abstract: An all-polymer semiconductor integrated device is demonstrated with a high-mobility conjugated polymer field-effect transistor (FET) driving a polymer light-emitting diode (LED) of similar size. The FET uses regioregular poly(hexylthiophene). Its performance approaches that of inorganic amorphous silicon FETs, with field-effect mobilities of 0.05 to 0.1 square centimeters per volt second and ON-OFF current ratios of >10 6 . The high mobility is attributed to the formation of extended polaron states as a result of local self-organization, in contrast to the variable-range hopping of self-localized polarons found in more disordered polymers. The FET-LED device represents a step toward all-polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.

2,657 citations

Journal ArticleDOI
15 Dec 2000-Science
TL;DR: A simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers is shown.
Abstract: We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

2,106 citations

Journal ArticleDOI
16 Sep 1994-Science
TL;DR: A field-effect transistor has been fabricated from polymer materials by printing techniques, which shows high current output, and opens the way for large-area, low-cost plastic electronics.
Abstract: A field-effect transistor has been fabricated from polymer materials by printing techniques. The device characteristics, which show high current output, are insensitive to mechanical treatments such as bending or twisting. This all-organic flexible device, realized with mild techniques, opens the way for large-area, low-cost plastic electronics.

1,469 citations

Journal ArticleDOI
30 Mar 2000-Nature
TL;DR: A crystallographically engineered naphthalenetetracarboxylic diimide derivative is reported that allows us to fabricate solution-cast n-channel FETs with promising performance at ambient conditions and to produce a complementary inverter circuit whose active layers are deposited entirely from the liquid phase.
Abstract: Electronic devices based on organic semiconductors offer an attractive alternative to conventional inorganic devices due to potentially lower costs, simpler packaging and compatibility with flexible substrates. As is the case for silicon-based microelectronics, the use of complementary logic elements-requiring n- and p-type semiconductors whose majority charge carriers are electrons and holes, respectively-is expected to be crucial to achieving low-power, high-speed performance. Similarly, the electron-segregating domains of photovoltaic assemblies require both n- and p-type semiconductors. Stable organic p-type semiconductors are known, but practically useful n-type semiconductor materials have proved difficult to develop, reflecting the unfavourable electrochemical properties of known, electron-demanding polymers. Although high electron mobilities have been obtained for organic materials, these values are usually obtained for single crystals at low temperatures, whereas practically useful field-effect transistors (FETs) will have to be made of polycrystalline films that remain functional at room temperature. A few organic n-type semiconductors that can be used in FETs are known, but these suffer from low electron mobility, poor stability in air and/or demanding processing conditions. Here we report a crystallographically engineered naphthalenetetracarboxylic diimide derivative that allows us to fabricate solution-cast n-channel FETs with promising performance at ambient conditions. By integrating our n-channel FETs with solution-deposited p-channel FETs, we are able to produce a complementary inverter circuit whose active layers are deposited entirely from the liquid phase. We expect that other complementary circuit designs can be realized by this approach as well.

1,007 citations