scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High speed laser scanning microscopy by iterative learning control of a galvanometer scanner

01 May 2016-Control Engineering Practice (Pergamon)-Vol. 50, pp 12-21
TL;DR: Experimental results verify the benefits of ILC of its wide control bandwidth, enabling a faster, more linear, and more accurate scanning without a phase lag and a gain mismatch.
About: This article is published in Control Engineering Practice.The article was published on 2016-05-01. It has received 53 citations till now. The article focuses on the topics: Galvanometer & Scanner.
Citations
More filters
Journal ArticleDOI
TL;DR: The possibility of clinical applications for melanoma diagnosis is investigated by imaging the boundaries and morphology of a human mole by developing a handheld PAM probe with a high signal-to-noise ratio and image rate using microelectromechanical systems technology.
Abstract: Optical resolution photoacoustic microscopy (OR-PAM) is a non-invasive, label-free method of in vivo imaging with microscopic resolution and high optical contrast. Based on intrinsic contrasts, OR-PAM has expanded to include in vivo vessel imaging, flow cytometry, physiological parameter analysis, and single-cell characterization. However, since conventional OR-PAM systems have a fixed tabletop configuration, a large system size, and slow imaging speed, their use in preclinical and clinical studies remains limited. In this study, using microelectromechanical systems (MEMS) technology, we developed a handheld PAM probe with a high signal-to-noise ratio and image rate. To enable broader application of the OR-PAM system, we reduced its size and combined its fast scanning capabilities into a small handheld probe that uses a 2-axis waterproof MEMS scanner (2A-WP-MEMS scanner). All acoustical, optical, and mechanical components are integrated into a single probe with a diameter of 17 mm and a weight of 162 g. This study shows phantom and in vivo images of various samples acquired with the probe, including carbon fibers, electrospun microfibers, and the ear, iris, and brain of a living mouse. In particular, this study investigated the possibility of clinical applications for melanoma diagnosis by imaging the boundaries and morphology of a human mole.

102 citations

Journal ArticleDOI
TL;DR: This paper demonstrates a simple and novel OR-PAM technique which is based on a typical galvanometer immersed in non-conducting liquid and achieves a high SNR and fast imaging speed, and successfully imaged the microvasculature in a mouse ear in vivo.
Abstract: Optical-resolution photoacoustic microscopy (OR-PAM), a promising microscopic imaging technique with high ultrasound resolution and superior optical sensitivity, can provide anatomical, functional, and molecular information at scales ranging from the microvasculature to single red blood cells. In particular, real-time OR-PAM imaging with a high signal-to-noise ratio (SNR) is a prerequisite for widespread use in preclinical and clinical applications. Although several technical approaches have been pursued to simultaneously improve the imaging speed and SNR of OR-PAM, they are bulky, complex, not sensitive, and/or not actually real-time. In this paper, we demonstrate a simple and novel OR-PAM technique which is based on a typical galvanometer immersed in non-conducting liquid. Using an opto-ultrasound combiner, this OR-PAM system achieves a high SNR and fast imaging speed. It takes only 2 seconds to acquire a volumetric image with a wide field of view (FOV) of 4 × 8 mm2 along the X and Y axes, respectively. The measured lateral and axial resolutions are 6.0 and 37.7 μm, respectively. Finally, as a demonstration of the system’s capability, we successfully imaged the microvasculature in a mouse ear in vivo. Our new method will contribute substantially to the popularization and commercialization of OR-PAM in various preclinical and clinical applications.

69 citations

Journal ArticleDOI
TL;DR: The 3D PHOVIS provides a unique tool to PA imaging researchers, expedites its growth, and attracts broad interests in a wide range of studies.

63 citations


Cites methods from "High speed laser scanning microscop..."

  • ...Without linearization, the images are divided into central and peripheral areas [41,42]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a system and controller design of an electromagnetically actuated fast steering mirror (FSM) tailored for Lissajous trajectories is presented, and compared with a state-of-the-art FSM system, the energy consumption can be reduced by a factor of 100 using the modified system structure and the dual tone controller.
Abstract: This paper introduces a system and controller design of an electromagnetically actuated fast steering mirror (FSM) tailored for Lissajous trajectories. The proposed system enables an improved performance in terms of energy consumption and tracking precision. By individually tuning the stiffness of each scan axis of the proposed FSM system, the resonance frequencies are placed at the drive frequencies of the desired Lissajous trajectory. The design of a dual tone controller for feedback control is presented, and matched to the scanning trajectory and the tuned FSM dynamics. It is shown that compared with a state-of-the-art FSM system, the energy consumption can be reduced by a factor of 100 using the modified system structure and the dual tone controller. Vice versa, the maximum scan area is enlarged by a factor of 60. The resulting root mean square tracking error can be reduced by 48% as compared with the conventional FSM system.

39 citations

Journal ArticleDOI
TL;DR: Constant linear velocity spiral scanning (CLV-SC) is introduced as a novel beam scanning method to maximize the data acquisition efficiency of ultrahigh speed 4D OCT systems and achieves more uniform transverse sampling compared to raster scanning.
Abstract: Ultrahigh speed optical coherence tomography (OCT) systems with >100 kHz A-scan rates can generate volumes rapidly with minimal motion artifacts and are well suited for 4D imaging (volumes through time) applications such as intra-operative imaging. In such systems, high OCT data acquisition efficiency (defined as the fraction of usable A-scans generated during the total acquisition time) is desired to maximize the volumetric frame rate and sampling pitch. However, current methods for beam scanning using non-resonant and resonant mirror scanners can result in severe scan distortion and transverse oversampling as well as require acquisition dead times, which limit the acquisition efficiency and performance of ultrahigh speed 4D OCT. We introduce constant linear velocity spiral scanning (CLV-SC) as a novel beam scanning method to maximize the data acquisition efficiency of ultrahigh speed 4D OCT systems. We demonstrate that CLV-SC does not require acquisition dead times and achieves more uniform transverse sampling compared to raster scanning. To assess its clinical utility, we implement CLV-SC with a 400 kHz OCT system and image the anterior eye and retina of healthy adults at up to 10 volumes per second with isotropic transverse sampling, allowing B-scans with equal sampling pitch to be extracted from arbitrary locations within a single volume. The feasibility of CLV-SC for intra-operative imaging is also demonstrated using a 800 kHz OCT system to image simulated retinal surgery at 15 volumes per second with isotropic transverse sampling, resulting in high quality volume renders that enable clear visualization of surgical instruments and manipulation of tissue.

36 citations

References
More filters
Book
01 Jan 1996
TL;DR: This book presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems and provides the reader with insights into the opportunities and limitations of feedback control.
Abstract: From the Publisher: This is a book on practical feedback control and not on system theory in general. Feedback is used in control systems to change the dynamics of the system and to reduce the sensitivity of the system to both signal and model uncertainty. The book presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. It provides the reader with insights into the opportunities and limitations of feedback control. Its objective is to enable the engineer to design real control systems. Important topics are: extensions and classical frequency-domain methods to multivariable systems, analysis of directions using the singular value decomposition, performance limitations and input-output controllability analysis, model uncertainty and robustness including the structured singular value, control structure design, and methods for controller synthesis and model reduction. Numerous worked examples, exercises and case studies, which make frequent use of MATLAB, are included. MATLAB files for examples and figures, solutions to selected exercises, extra problems and linear state-space models for the case studies are available on the Internet.

6,279 citations

BookDOI
01 Jan 1990
TL;DR: Methods for Three-Dimensional Imaging and Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen.
Abstract: Foundations of Confocal Scanned Imaging in Light Microscopy -- Fundamental Limits in Confocal Microscopy -- Special Optical Elements -- Points, Pixels, and Gray Levels: Digitizing Image Data -- Laser Sources for Confocal Microscopy -- Non-Laser Light Sources for Three-Dimensional Microscopy -- Objective Lenses for Confocal Microscopy -- The Contrast Formation in Optical Microscopy -- The Intermediate Optical System of Laser-Scanning Confocal Microscopes -- Disk-Scanning Confocal Microscopy -- Measuring the Real Point Spread Function of High Numerical Aperture Microscope Objective Lenses -- Photon Detectors for Confocal Microscopy -- Structured Illumination Methods -- Visualization Systems for Multi-Dimensional Microscopy Images -- Automated Three-Dimensional Image Analysis Methods for Confocal Microscopy -- Fluorophores for Confocal Microscopy: Photophysics and Photochemistry -- Practical Considerations in the Selection and Application of Fluorescent Probes -- Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy -- Confocal Microscopy of Living Cells -- Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch -- Interaction of Light with Botanical Specimens -- Signal-to-Noise Ratio in Confocal Microscopes -- Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging -- Blind Deconvolution -- Image Enhancement by Deconvolution -- Fiber-Optics in Scanning Optical Microscopy -- Fluorescence Lifetime Imaging in Scanning Microscopy -- Multi-Photon Molecular Excitation in Laser-Scanning Microscopy -- Multifocal Multi-Photon Microscopy -- 4Pi Microscopy -- Nanoscale Resolution with Focused Light: Stimulated Emission Depletion and Other Reversible Saturable Optical Fluorescence Transitions Microscopy Concepts -- Mass Storage, Display, and Hard Copy -- Coherent Anti-Stokes Raman Scattering Microscopy -- Related Methods for Three-Dimensional Imaging -- Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen -- Practical Confocal Microscopy -- Selective Plane Illumination Microscopy -- Cell Damage During Multi-Photon Microscopy -- Photobleaching -- Nonlinear (Harmonic Generation) Optical Microscopy -- Imaging Brain Slices -- Fluorescent Ion Measurement -- Confocal and Multi-Photon Imaging of Living Embryos -- Imaging Plant Cells -- Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells -- Automated Confocal Imaging and High-Content Screening for Cytomics -- Automated Interpretation of Subcellular Location Patterns from Three-Dimensional Confocal Microscopy -- Display and Presentation Software -- When Light Microscope Resolution Is Not Enough:Correlational Light Microscopy and Electron Microscopy -- Databases for Two- and Three-Dimensional Microscopical Images in Biology -- Confocal Microscopy of Biofilms — Spatiotemporal Approaches -- Bibliography of Confocal Microscopy.

4,121 citations

Journal ArticleDOI
TL;DR: Though beginning its third decade of active research, the field of ILC shows no sign of slowing down and includes many results and learning algorithms beyond the scope of this survey.
Abstract: This article surveyed the major results in iterative learning control (ILC) analysis and design over the past two decades. Problems in stability, performance, learning transient behavior, and robustness were discussed along with four design techniques that have emerged as among the most popular. The content of this survey was selected to provide the reader with a broad perspective of the important ideas, potential, and limitations of ILC. Indeed, the maturing field of ILC includes many results and learning algorithms beyond the scope of this survey. Though beginning its third decade of active research, the field of ILC shows no sign of slowing down.

2,645 citations

Journal ArticleDOI
TL;DR: In this article, a digital feed-forward control algorithm for tracking desired time varying signals is presented, which is particularly suited to the general motion control problems including robotic arms and positioning tables.
Abstract: A digital feedforward control algorithm for tracking desired time varying signals is presented. The feedforward controller cancels all the closed-loop poles and cancellable closed-loop zeros. For uncancellable zeros, which include zeros outside the unit circle, the feedforward controller cancels the phase shift induced by them. The phase cancellation assures that the frequency response between the desired output and actual output exhibits zero phase shift for all the frequencies. The algorithm is particularly suited to the general motion control problems including robotic arms and positioning tables. A typical motion control problem is used to show the effectiveness of the proposed feedforward controller.

1,477 citations

Journal ArticleDOI
TL;DR: An inversion procedure is introduced for nonlinear systems which constructs a bounded input trajectory in the preimage of a desired output trajectory which leads to a simple geometric connection between the unstable manifold of the system zero dynamics and noncausality in the nonminimum phase case.
Abstract: An inversion procedure is introduced for nonlinear systems which constructs a bounded input trajectory in the preimage of a desired output trajectory. In the case of minimum phase systems, the trajectory produced agrees with that generated by Hirschorn's inverse dynamic system; however, the preimage trajectory is noncausal (rather than unstable) in the nonminimum phase case. In addition, the analysis leads to a simple geometric connection between the unstable manifold of the system zero dynamics and noncausality in the nonminimum phase case. With the addition of stabilizing feedback to the preimage trajectory, asymptotically exact output tracking is achieved. Tracking is demonstrated with a numerical example and compared to the well-known Byrnes-Isidori regulator. Rather than solving a partial differential equation to construct a regulator, the inverse is calculated using a Picard-like interaction. When preactuation is not possible, noncausal inverse trajectories can be truncated resulting in the tracking-error transients found in other control schemes.

825 citations