scispace - formally typeset
Search or ask a question
Journal ArticleDOI

High velocity interparticle collisions driven by ultrasound.

TL;DR: A simple kinematic model of the ultrasound-driven interparticle fusion predicts a melting criterion that is nonmonotonically dependent on particle size and is shown to be in agreement with experiment.
Abstract: Ultrasonic irradiation of slurries produces high velocity impacts between solid metal particles that are sufficient to cause interparticle melting. Sonication of 5 μm Zn powder as a slurry in alkanes, for example, produces dense agglomerates 50 μm in diameter consisting of ∼1000 fused particles. Particle size was found to be the most influential parameter in inducing local melting during interparticle collisions. Ultrasonic irradiation of mixed powders resulted in formation of agglomerates with larger Zn particles “soldered” by the smaller ones. A simple kinematic model of the ultrasound-driven interparticle fusion predicts a melting criterion that is nonmonotonically dependent on particle size and is shown to be in agreement with experiment.
Citations
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: The fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis are summarized.
Abstract: Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis.

1,501 citations

Journal ArticleDOI
TL;DR: This tutorial review provides examples of how the chemical and physical effects of high intensity ultrasound can be exploited for the preparation or modification of a wide range of nanostructured materials.
Abstract: High intensity ultrasound can be used for the production of novel materials and provides an unusual route to known materials without bulk high temperatures, high pressures, or long reaction times. Several phenomena are responsible for sonochemistry and specifically the production or modification of nanomaterials during ultrasonic irradiation. The most notable effects are consequences of acoustic cavitation (the formation, growth, and implosive collapse of bubbles), and can be categorized as primary sonochemistry (gas-phase chemistry occurring inside collapsing bubbles), secondary sonochemistry (solution-phase chemistry occurring outside the bubbles), and physical modifications (caused by high-speed jets or shock waves derived from bubble collapse). This tutorial review provides examples of how the chemical and physical effects of high intensity ultrasound can be exploited for the preparation or modification of a wide range of nanostructured materials.

829 citations

Journal ArticleDOI
TL;DR: Application of spectrometric methods of pyrometry as well as tools of plasma diagnostics to relative line intensities, profiles, and peak positions have allowed the determination of intracavity temperatures and pressures.
Abstract: Acoustic cavitation, the growth and rapid collapse of bubbles in a liquid irradiated with ultrasound, is a unique source of energy for driving chemical reactions with sound, a process known as sonochemistry. Another consequence of acoustic cavitation is the emission of light [sonoluminescence (SL)]. Spectroscopic analyses of SL from single bubbles as well as a cloud of bubbles have revealed line and band emission, as well as an underlying continuum arising from a plasma. Application of spectrometric methods of pyrometry as well as tools of plasma diagnostics to relative line intensities, profiles, and peak positions have allowed the determination of intracavity temperatures and pressures. These studies have shown that extraordinary conditions (temperatures up to 20,000 K; pressures of several thousand bar; and heating and cooling rates of >10 12 Ks −1 ) are generated within an otherwise cold liquid.

537 citations

Journal ArticleDOI
TL;DR: The results suggest that the rate of Au(III) reduction as well as the size distribution of Au particles are governed by the chemical effects of cavitation and are not significantly affected by the physical effects accompanying ultrasound-induced cavitation.
Abstract: The rate of sonochemical reduction of Au(III) to produce Au nanoparticles in aqueous solutions containing 1-propanol has been found to be strongly dependent upon the ultrasound frequency. The size and distribution of the Au nanoparticles produced can also be correlated with the rate of Au(III) reduction, which in turn is influenced by the applied frequency. Our results suggest that the rate of Au(III) reduction as well as the size distribution of Au particles are governed by the chemical effects of cavitation and are not significantly affected by the physical effects accompanying ultrasound-induced cavitation.

295 citations

References
More filters
Book
01 Jan 1973
TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Abstract: CRC handbook of chemistry and physics , CRC handbook of chemistry and physics , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

52,268 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: The chemical effects of ultrasound derive primarily from acoustic cavitation, which results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble as mentioned in this paper.
Abstract: The chemical effects of ultrasound derive primarily from acoustic cavitation. Bubble collapse in liquids results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble. The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical reactions under extreme conditions. A diverse set of applications of ultrasound to enhance chemical reactivity has been explored with important uses in synthetic materials chemistry. For example, the sonochemical decomposition of volatile organometallic precursors in low-volatility solvents produces nanostructured materials in various forms with high catalytic activities. Nanostructured metals, alloys, oxides, carbides and sulfides, nanometer colloids, and nanostructured supported catalysts can all be prepared by this general route. Another important application of sonochemistry in materials chemistry has been the preparation of biomaterials, most notably protein microspheres. Such microspheres have a wide range of biomedical applications, including their use in echo contrast agents for sonography, magnetic resonance imaging, contrast enhancement, and oxygen or drug delivery. Other applications include the modification of polymers and polymer surfaces.

1,550 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the acoustic transients emitted after breakdown and cavitation bubble collapse upon focusing a Q-switch laser pulse into a liquid with special emphasis on their modifications induced by a solid boundary.
Abstract: The acoustic transients emitted after breakdown and cavitation bubble collapse upon focusing a Q‐switch laser pulse into a liquid are investigated with special emphasis on their modifications induced by a solid boundary. For measuring the form p(t)/pmax of the pressure pulses an optical technique with a resolution of 10 ns has been developed. When p(t)/pmax is known, the pressure amplitude can be determined even when a transducer with a rise time much longer than the pulse duration is used. The duration of the transients (20–30 ns) and their pressure are nearly the same after breakdown and spherical bubble collapse. During spherical collapse, a maximum pressure of about 60 kbar is developed inside a bubble with Rmax=3.5 mm, and on average 73% of the bubble energy loss is transformed into acoustic energy. The sound emission near a solid boundary strongly depends on the normalized distance γ between the bubble and the boundary. The highest pressures at the boundary are achieved for γ→0; for γ=0.2 and Rmax =3.5 mm it has been found that p=2.5 kbar. These results are discussed with respect to the mechanisms of cavitation erosion important for hydraulic cavitation, laser lithotripsy, and ocular surgery.

353 citations