scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Higher mode effects of multistorey substructures on the seismic response of double-layered steel gridshell domes

15 Sep 2021-Engineering Structures (Elsevier BV)-Vol. 243, pp 112677
TL;DR: In this article, a parametric study was conducted on steel gridshell domes with 60, 100 and 150m spans and six-storey substructures to investigate the interaction between the higher substructure modes and dominant roof modes.
About: This article is published in Engineering Structures.The article was published on 2021-09-15 and is currently open access. It has received 5 citations till now. The article focuses on the topics: Substructure & Response spectrum.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a numerical analysis of the seismic behavior of asymmetric low-rise reinforced concrete (R/C) frames is performed considering the deformability of the supporting soil.
Abstract: A numerical investigation of the seismic behaviour of asymmetrical low-rise reinforced concrete (R/C) frames is performed considering the deformability of the supporting soil. The typical rigid base assumption is adopted by most current seismic design codes for ordinary buildings, implicitly assuming that the “beneficial” influence of the Soil-Structure Interaction (SSI) effects results in a decrease of the internal forces of a structure. However, in recent research works, SSI is found to affect the structural response in not always a beneficial manner and occasionally in a detrimental one. In the current study, the non-linear time-domain seismic analyses of selected 2D and 3D symmetric and asymmetric R/C framed buildings are presented considering initially the fixed base assumption. Subsequently, these R/C building models, subjected to the same seismic excitations, are analysed considering SSI, by applying a set of orthogonal footings with tie beams which interact with the soil medium. In addition, in the 3D models, the case of a foundation mat supporting the frames is examined. Comparisons between the numerical response results obtained for the examined supporting conditions yield useful conclusions regarding the modified elastoplastic estimated behaviour of common low-rise R/C buildings due to SSI, which can be used for the improvement of the seismic design codes.

8 citations

Journal ArticleDOI
TL;DR: In this article , the acceleration response spectra of a single-layer spherical reticulated shell structure are compared with those described in the current seismic design codes of the nonstructural components.
Abstract: In recent years, earthquake disasters have seriously damaged nonstructural components, so it is necessary to study their seismic performance. However, the existing scholarly research mainly concentrates on multistorey and high-rise buildings, and there are still deficiencies in the analysis of the seismic performance of the nonstructural components in large-span structures under seismic action. In this paper, the acceleration responses of a single-layer spherical reticulated shell structure are compared with those described in the current seismic design codes of the nonstructural components, and it is found that the current codes are not fully applicable to the seismic design of the nonstructural components in reticulated shell structures. The calculation formulas of the acceleration response spectra of single-layer spherical shell nodes are theoretically derived, and the shell node acceleration response spectra are affected by higher-order modes, orthogonal horizontal seismic input directions, and the membrane stiffness of the shell nodes. The variations in the acceleration responses of the shell nodes with node position and rise-to-span ratio are analysed, and a design method for the equivalent seismic action of the nonstructural components in a single-layer spherical reticulated shell with a roofing system is proposed.

4 citations

Journal ArticleDOI
TL;DR: In this article , three types of damper placement are discussed, including installing dampers within a single building, connecting two buildings at the same floor level, and connecting two building at the inter-story level.
Abstract: This paper investigates the seismic performance of two adjacent buildings connected by viscous dampers. Three types of damper placement are discussed, including installing dampers within a single building, connecting two buildings at the same floor level, and connecting two buildings at the inter-story level. Analytical models are established to consider various dynamic properties of the adjacent buildings, and the theoretical solutions are obtained, including the transmissibility curves, additional modal damping, and input energy under the seismic design spectrum. Time history analyses of an engineering project are performed with different damper placements. Different numerical models are compared for frequently and rarely occurred earthquakes. The seismic mitigation effect is discussed with regard to the story drift reduction rate and dynamic energy. Theoretical and numerical results demonstrate that the connecting dampers provide added modal damping while causing the coupled response. As a result, it is less efficient than traditional ways of placement within a building. Furthermore, the connecting dampers significantly increase the reaction of the floors without installed dampers. When designing dampers to connect the adjacent buildings, careful engineering calculations should be made.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the authors present the problem of the efficient shaping of spherical structures of geodesic domes, which is the basis for creating a regular octahedron, in the aspect of sustainable development.
Abstract: This paper presents the problem of the efficient shaping of spherical structures of geodesic domes, which is the basis for creating a regular octahedron, in the aspect of sustainable development. The proposed two methods of shaping covered by this study differ in the way the dividing points of the initial edges of the regular octahedron are connected, and, therefore, in the way the sphere is shaped. Using different methods, two families of domes with different lengths of struts but with a similar number of them were obtained. The conducted comparative analysis leads to the indication of this method of shaping the topology, thanks to which it is possible to obtain structures with less consumption of construction material, and, consequently, with less weight. Both the geometry and weight indicate the advantages of geodesic domes created using the first subdivision method. The selection of the appropriate method of shaping geodesic domes is a consequence of a sustainable design strategy. The presented structures in the form of geodesic domes, the basis of which is a regular octahedron, can be original, innovative coverings, while the detailed analysis carried out is intended to provide design guidelines that will facilitate both architects and designers.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the applicability of ductility reduction factors (or Rμ factors) to estimate the inelastic response spectra and an alternative equivalent linearisation approach to compute the peak horizontal acceleration of multistorey substructures with buckling-restrained braces.
Abstract: Curved gridshells are excited not only in the horizontal direction but also experience large anti-symmetric vertical accelerations when subjected to horizontal earthquake ground motions. In addition to the coupled response, gridshells exhibit closely spaced modes and substructure-roof interaction. Nevertheless, previous studies have proposed elastic horizontal and vertical equivalent static seismic forces considering these complex dynamic response characteristics. These are determined from the input horizontal acceleration at the substructure’s roof level, an assumed acceleration distribution, nodal roof masses and amplification factors derived from the dynamic characteristics of the dome and substructure. To extend this methodology to nonlinear substructures with displacement-dependent damping devices, this paper investigates the applicability of ductility reduction factors (or Rμ factors) to estimate the inelastic response spectra and an alternative equivalent linearisation approach to compute the peak horizontal acceleration of multistorey substructures with buckling-restrained braces. This is achieved by modelling the curved roof as a rigid mass for the substructure model, and using its idealised base shear-roof displacement relationship obtained from modal pushover analyses. The peak horizontal acceleration of the substructure is then used to obtain the equivalent static loads of the curved roof using amplification factors, and the accuracies are verified against the results from nonlinear response history analyses. It was confirmed that the Rμ R μ factors combined with the roof amplification factors provide a simple way to estimate the peak roof response with sufficient accuracy for preliminary design of domes with multistorey substructures having low post-yield stiffness.
References
More filters
Book
01 Jan 1976
TL;DR: Numerical methods in finite element analysis, Numerical techniques in finite elements analysis, and so on.
Abstract: Numerical methods in finite element analysis , Numerical methods in finite element analysis , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

2,085 citations

Book
01 Jan 2005
TL;DR: In this article, the authors present a set of structural and structural design rules for concrete and steel-concrete buildings with respect to the effects of seismic action on fixed base and isolated base.
Abstract: Chapter 1. Introduction Chapter 2. Performance requirements and compliance criteria, 2.1 Performance requirements for new designs in Eurocode 8 and associated seismic hazard levels, 2.2 Compliance criteria for the performance requirements and their implementation, 2.3 Exemption from the application of Eurocode 8 Chapter 3. Seismic Actions, 3.1 Ground conditions, 3.2 Seismic action,3.3 Displacement Response Spectra Chapter 4. Design of Buildings, 4.1 Scope, 4.2 Conception of structures for earthquake resistant buildings, 4.3 Structural regularity and implications for the design, 4.4 Combination of gravity loads and other actions with the design seismic action, 4.5 Methods of analysis, 4.6 Modeling of buildings for linear analysis, 4.7 Modeling of buildings for nonlinear analysis, 4.8 Analysis for accidental torsional effects, 4.9 Combination of the effects of the components of the seismic action, 4.10 "Primary" vs. "secondary" seismic elements, 4.11 Verifications, 4.12 Special rules for frame systems with masonry infills Chapter 5. Design and detailing rules for concrete buildings, 5.1 Scope, 5.2 Types of concrete elements-Definition of their "critical regions", 5.3 Types of structural systems for earthquake resistance of concrete buildings, 5.4 Design concepts: Design for strength or for ductility and energy dissipation-Ductility Classes, 5.5 Behaviour factor q of concrete buildings designed for energy dissipation, 5.6 Design strategy for energy dissipation, 5.7 Detailing rules for local ductility of concrete members, 5.8 Special rules for large walls in structural systems of large lightly reinforced walls, 5.9 Special rules for concrete systems with masonry or concrete infills, 5.10 Design and detailing of foundation elements Chapter 6. Design and detailing rules for steel buildings, 6.1 Scope, 6.2 Dissipative versus low dissipative structures, 6.3 Capacity design principle, 6.4 Design for local energy dissipation in the elements and their connections, 6.5 Design rules aiming at the realisation of dissipative zones, 6.6 Background of the deformation capacity required by Eurocode 8, 6.7 Design against localization of strains, 6.8 Design for global dissipative behaviour of structures, 6.9 Moment resisting frames, 6.10 Frames with concentric bracings, 6.11 Frames with eccentric bracings, 6.12 Moment resisting frames with infills, 6.13 Control of design and construction Chapter 7. Design and detailing of composite steel-concrete buildings, 7.1 Introductory remark, 7.2 Degree of composite character, 7.3 Materials, 7.4 Design for local energy dissipation in the elements and their connections, 7.5 Design for global dissipative behaviour of structures, 7.6 Properties of composite sections for analysis of structures and for resistance checks, 7.7 Composite connections in dissipative zones, 7.8 Rules for members, 7.9 Design of columns, 7.10 Steel beams composite with slab, 7.11 Design and detailing rules for moment frames, 7.12 Composite concentrically braced frames, 7.13 Composite eccentrically braced frames, 7.14 Reinforced concrete shear walls composite with structural steel elements, 7.15 Composite or concrete shear walls coupled by steel or composite beams, 7.16 Composite steel plates shear walls Chapter 8. Design and detailing rules for timber buildings, 8.1 Scope, 8.2 General concepts in earthquake resistant timber buildings, 8.3 Materials and properties of dissipative zones, 8.4 Ductility classes and behaviour factors, 8.5 Detailing, 8.6 Safety verifications Chapter 9. Seismic design with base isolation, 9.1 Introduction, 9.2 Dynamics of seismic isolation, 9.3 Design criteria, 9.4 Seismic isolation systems and devices, 9.5 Modelling and analysis procedures, 9.6 Safety criteria and verifications, 9.7 Design seismic action effects on fixed base and isolated buildings Chapter 10. Foundations, retaining structures and geotechnical aspects, 10.1 Introduction, 10.2 Seismic action, 10.3 Ground properties, 10.4 Requ

1,268 citations

Journal ArticleDOI
TL;DR: In this article, the authors explain some parameters influencing the failure load of domes and barrel vaults and make suggestions for the imperfection shape which has to be assumed in an analysis.

85 citations

Journal ArticleDOI
TL;DR: Reticulated shell structure buckling using approximate equivalent shell and discrete analysis of individual beams was studied in this article, where the authors proposed a model of the buckled shell structure.

50 citations

Journal ArticleDOI
TL;DR: In this paper, the failure of a single-layer reticulated dome under a strong seismic load is due to the failure in dynamic strength resulting from the excessive damage of material.

36 citations