scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Highly Flexible and Efficient Solar Steam Generation Device

TL;DR: The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications.
Abstract: Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm-2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications.
Citations
More filters
Journal ArticleDOI
TL;DR: Tao et al. as discussed by the authors discuss the development of the key components for achieving high-performance evaporation, including solar absorbers and structures, thermal insulators and thermal concentrators.
Abstract: As a ubiquitous solar-thermal energy conversion process, solar-driven evaporation has attracted tremendous research attention owing to its high conversion efficiency of solar energy and transformative industrial potential. In recent years, solar-driven interfacial evaporation by localization of solar-thermal energy conversion to the air/liquid interface has been proposed as a promising alternative to conventional bulk heating-based evaporation, potentially reducing thermal losses and improving energy conversion efficiency. In this Review, we discuss the development of the key components for achieving high-performance evaporation, including solar absorbers, evaporation structures, thermal insulators and thermal concentrators, and discuss how they improve the performance of the solar-driven interfacial evaporation system. We describe the possibilities for applying this efficient solar-driven interfacial evaporation process for energy conversion applications. The exciting opportunities and challenges in both fundamental research and practical implementation of the solar-driven interfacial evaporation process are also discussed. The thermal properties of solar energy can be exploited for many applications, including evaporation. Tao et al. review recent developments in the field of solar-driven interfacial evaporation, which have enabled higher-performance structures by localizing energy conversion to the air/liquid interface.

1,139 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review on the current development in efficient photothermal evaporation, and suggest directions to further enhance its overall efficiency through the judicious choice of materials and system designs, while synchronously capitalizing waste energy to realize concurrent clean water and energy production.
Abstract: Photothermal materials with broad solar absorption and high conversion efficiency have recently attracted significant interest. They are becoming a fast-growing research focus in the area of solar-driven vaporization for clean water production. The parallel development of thermal management strategies through both material and system designs has further improved the overall efficiency of solar vaporization. Collectively, this green solar-driven water vaporization technology has regained attention as a sustainable solution for water scarcity. In this review, we will report the recent progress in solar absorber material design based on various photothermal conversion mechanisms, evaluate the prerequisites in terms of optical, thermal and wetting properties for efficient solar-driven water vaporization, classify the systems based on different photothermal evaporation configurations and discuss other correlated applications in the areas of desalination, water purification and energy generation. This article aims to provide a comprehensive review on the current development in efficient photothermal evaporation, and suggest directions to further enhance its overall efficiency through the judicious choice of materials and system designs, while synchronously capitalizing waste energy to realize concurrent clean water and energy production.

1,061 citations

Journal ArticleDOI
20 Mar 2019-Joule
TL;DR: In this article, a review of recent developments in photothermal materials, with a focus on their photothermal conversion mechanisms as light absorbers, is presented, and the potential applications of this attractive technology in a variety of energy and environmental fields are described.

690 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid hydrogel composed of a hydrophilic polymer framework (polyvinyl alcohol, PVA) and solar absorber (reduced graphene oxide, rGO), which has internal capillary channels was used for solar evaporation.
Abstract: Solar desalination is a promising method for large-scale water purification by utilizing sustainable energy. However, current high-rate solar evaporation often relies on optical concentration due to the diffusion of natural sunlight, which leads to inadequate energy supply. Here we demonstrate a hydrogel-based solar evaporator that is capable of generating vapor at a high rate of ∼2.5 kg m−2 h−1 under one sun irradiation (1 kW m−2), among the best values reported in the literature. Such highly efficient solar evaporation is achieved by a hybrid hydrogel composed of a hydrophilic polymer framework (polyvinyl alcohol, PVA) and solar absorber (reduced graphene oxide, rGO), which has internal capillary channels. The PVA can greatly facilitate the water evaporation owing to the reduced water evaporation enthalpy in the hydrogel network. The rGO penetrating into the polymeric network enables efficient energy utilization. The capillary channels sustain an adequate water supply for continuous solar vapor generation at a high rate. This hydrogel-based solar evaporator also exhibits promising antifouling properties, enabling long-term water desalination without recycling. The high-efficiency hydrogel-based solar vapor generators open significant opportunities to enhance solar water evaporation performance and reduce the cost of solar desalination systems.

562 citations

Journal ArticleDOI
TL;DR: A self-regenerating solar evaporator featuring excellent antifouling properties using a rationally designed artificial channel-array in a natural wood substrate is reported, exhibiting the highest efficiency in a highly concentrated salt solution under 1 sun irradiation, as well as long-term stability.
Abstract: Emerging solar desalination by interfacial evaporation shows great potential in response to global water scarcity because of its high solar-to-vapor efficiency, low environmental impact, and off-grid capability. However, solute accumulation at the heating interface has severely impacted the performance and long-term stability of current solar evaporation systems. Here, a self-regenerating solar evaporator featuring excellent antifouling properties using a rationally designed artificial channel-array in a natural wood substrate is reported. Upon solar evaporation, salt concentration gradients are formed between the millimeter-sized drilled channels (with a low salt concentration) and the microsized natural wood channels (with a high salt concentration) due to their different hydraulic conductivities. The concentration gradients allow spontaneous interchannel salt exchange through the 1-2 µm pits, leading to the dilution of salt in the microsized wood channels. The drilled channels with high hydraulic conductivities thus function as salt-rejection pathways, which can rapidly exchange the salt with the bulk solution, enabling the real-time self-regeneration of the evaporator. Compared to other salt-rejection designs, the solar evaporator exhibits the highest efficiency (≈75%) in a highly concentrated salt solution (20 wt% NaCl) under 1 sun irradiation, as well as long-term stability (over 100 h of continuous operation).

538 citations

References
More filters
Journal ArticleDOI
TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Abstract: Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.

7,076 citations

Journal ArticleDOI
TL;DR: In this article, three major ways to utilize nanostructures for the design of solar energy conversion devices are discussed: (i) mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells.
Abstract: The increasing energy demand in the near future will force us to seek environmentally clean alternative energy resources. The emergence of nanomaterials as the new building blocks to construct light energy harvesting assemblies has opened up new ways to utilize renewable energy sources. This article discusses three major ways to utilize nanostructures for the design of solar energy conversion devices: (i) Mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells. This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. Strategies to employ ordered assemblies of semiconductor and metal nanoparticles, inorganic-organic hybrid assemblies, and carbon nanostructures in the energy conversion schemes are also discussed. Directing the future research efforts toward utiliza...

2,119 citations

Journal ArticleDOI
09 Feb 2007-Science
TL;DR: New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
Abstract: At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.

2,113 citations

Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
TL;DR: In this article, a plasmon-enhanced solar desalination device, fabricated by the self-assembly of aluminium nanoparticles into a three-dimensional porous membrane, is demonstrated.
Abstract: Self-assembling aluminium nanoparticles are used to make a plasmon-enhanced device for desalination. Plasmonics has generated tremendous excitement because of its unique capability to focus light into subwavelength volumes1, beneficial for various applications such as light harvesting2,3, photodetection4, sensing5, catalysis6 and so on. Here we demonstrate a plasmon-enhanced solar desalination device, fabricated by the self–assembly of aluminium nanoparticles into a three-dimensional porous membrane. The formed porous plasmonic absorber can float naturally on water surface, efficiently absorb a broad solar spectrum (>96%) and focus the absorbed energy at the surface of the water to enable efficient (∼90%) and effective desalination (a decrease of four orders of magnitude). The durability of the devices has also been examined, indicating a stable performance over 25 cycles under various illumination conditions. The combination of the significant desalination effect, the abundance and low cost of the materials, and the scalable production processes suggest that this type of plasmon-enhanced solar desalination device could provide a portable desalination solution.

1,567 citations