scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Highly improved adsorption selectivity of L-phenylalanine imprinted polymeric submicron/nanoscale beads prepared by modified suspension polymerization

24 Jun 2011-Korean Journal of Chemical Engineering (Springer US)-Vol. 28, Iss: 9, pp 1936-1944
TL;DR: In this article, the effects of pH, template and concentration of racemate solution on the performance of the phenylalanine (Phe) imprinted polymeric submicron/nanoscale beads were studied.
Abstract: Molecularly imprinted polymer (MIP) submicron/nanoscale beads selective for L-Phenylalanine (L-Phe) and D-Phe as well as non-imprinted beads were prepared by modified suspension polymerization involving agitation of the reaction mixture at high rotation speed under safe radical conditions. The effects of pH, template and concentration of racemate solution on the performance of the phenylalanine (Phe) imprinted polymeric submicron/nanoscale beads were studied. L-Phe-imprinted submicron/nanoscale beads prepared for the first time by modified suspension polymer- ization showed enhanced adsorption capacity and selectivity over those of D-Phe imprinted and non-imprinted beads. Maximum adsorption capacity, 0.35 mg/g, and selectivity, 1.62, of L-Phe imprinted submicron/nanoscale beads were higher than the adsorption capacities, 0.30 and 0.19 mg/g, and selectivities, 1.59 and 1.02, of D-Phe imprinted and non- imprinted submicron/nanoscale beads, respectively. FE-SEM analyses revealed that L- and D-Phe imprinted beads were larger (100 nm-1.5 µm) than non-imprinted nanobeads (100-800 nm). 13 C CP-MAS NMR spectroscopy helped in cor- relating the bead sizes and the extent of reaction during polymerization. Similarly, FT-IR study was used for evaluation of structural characteristics of the prepared Phe-imprinted and non-imprinted beads. The preparation of Phe-imprinted submicron/nanoscale beads with improved adsorption and separation properties and the study of effect of template on the size and performance of the prepared beads are suitable from both economical and research point of view in MIP field.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A survey of the literature covering the development of molecular imprinting science and technology over the years 2004–2011 and efforts to apply these polymeric materials to a range of application areas is presented.
Abstract: Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, rev ...

413 citations

Journal ArticleDOI
Won Jo Cheong1, Faiz Ali1, Ji Ho Choi1, Jin OoK Lee1, Kim Yune Sung1 
15 Mar 2013-Talanta
TL;DR: In this review, progresses in applications of enantio-selective recognition by MIPs will be critically reviewed for the recent period since 2007.

82 citations

Journal ArticleDOI
01 Apr 2016-Talanta
TL;DR: A novel dummy template molecularly imprinted polymer (DMIP) based on a vinyl-SiO2 microspheres surface for the simultaneous selective recognition and enrichment of 18 amino acids was prepared via a surface molecular imprinting technique using theanine as a dummy template, indicating that the obtained DMIP sorbents have high selectivity.

41 citations

Journal ArticleDOI
19 Oct 2020
TL;DR: In this article, a critical review of morphology design and control of spherical molecular imprinted polymers (MIPs) is presented, focusing on solid sphere, core-shell, hollow and mesoporous MIPs.
Abstract: Molecularly imprinted polymers (MIPs) display specific recognition ability for their template in shape, size and functional monomers. The morphology has an important influence on the binding capacity of MIPs, thus affecting the enrichment efficiency and detection sensitivity. In this critical review, we highlight the morphology design and control of spherical MIPs, mainly focusing on solid sphere, core–shell, hollow and mesoporous MIPs. The methods for preparation of MIPs of different morphologies are summarized, and typical TEM or SEM images are displayed. The influence of morphology on the application of MIPs is highlighted. Finally, we discuss the remaining challenges, and some significant attempts in further improving the morphology of MIPs are also proposed.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: A critical value of shell thickness for the maximum rebindingcapacity was determined by testing the evolution of rebinding capacity with shell thickness, which provides new insights into the effectiveness of molecular imprinting and the form of imprinted materials.
Abstract: This paper reports a surface functional monomer-directing strategy for the highly dense imprinting of 2,4,6-trinitrotoluene (TNT) molecules at the surface of silica nanoparticles. It has been demonstrated that the vinyl functional monomer layer of the silica surface can not only direct the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers, but also drive TNT templates into the formed polymer shells through the charge-transfer complexing interactions between TNT and the functional monomer layer. The two basic processes lead to the formation of uniform core−shell TNT-imprinted nanoparticles with a controllable shell thickness and a high density of effective recognition sites. The high capacity and fast kinetics to uptake TNT molecules show that the density of effective imprinted sites in the nanoshells is nearly 5 times that of traditional imprinted particles. A critical value of shell thickness for the maximu...

533 citations

Journal ArticleDOI
TL;DR: A suspension polymerization technique suitable for molecular imprinting is described, based on the use of a liquid perfluorocarbon as the dispersing phase, which produces polymer beads, with almost quantitative yield, which can be used after only a simple washing step.
Abstract: A suspension polymerization technique suitable for molecular imprinting is described, based on the use of a liquid perfluorocarbon as the dispersing phase. This dispersant does not interfere with the interactions between functional monomers and print molecules required for the recognition process during molecular imprinting. The method produces polymer beads, with almost quantitative yield, which can be used after only a simple washing step. An acrylate polymer with perfluorocarbon and poly(oxyethylene) ester groups was used to stabilize an emulsion of functional monomer, cross-linker, print molecule, initiator, and porogenic solvent in perfluoro(methylcyclohexane). Initiation of polymerization by UV irradiation resulted in polymer beads. The average bead size could be controlled between about 50 and 5 μm by varying the amount of stabilizing polymer. SEM of the beads indicated spherical particles with morphology typical of beads made by suspension polymerization. The technique was applicable to a range of...

445 citations

Journal ArticleDOI
TL;DR: New synthetic conditions are initiated to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template, and the imprinted sites displayed high chiral selectivity.

387 citations

Journal ArticleDOI
TL;DR: The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.
Abstract: This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid−base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a bette...

217 citations