scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks

07 Jul 2015-Nano Letters (American Chemical Society)-Vol. 15, Iss: 8, pp 5240-5247
TL;DR: A multidimensional strain sensor composed of two layers of prestrained silver nanowire percolation network with decoupled and polarized electrical response in principal and perpendicular directional strain is demonstrated.
Abstract: To overcome the limitation of the conventional single axis-strain sensor, we demonstrate a multidimensional strain sensor composed of two layers of prestrained silver nanowire percolation network with decoupled and polarized electrical response in principal and perpendicular directional strain. The information on strain vector is successfully measured up to 35% maximum strain with large gauge factor (>20). The potential of the proposed sensor as a versatile wearable device has been further confirmed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Abstract: There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin-mountable, and wearable strain sensors are needed for several potential applications including personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin-mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.

2,154 citations

Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

Journal ArticleDOI
TL;DR: This perspective reviews key challenges and technological gaps impeding the successful realization of effective wearable chemical sensor systems, related to materials, power, analytical procedure, communication, data acquisition, processing, and security.
Abstract: Wearable sensors have received considerable interest over the past decade owing to their tremendous promise for monitoring the wearers’ health, fitness, and their surroundings. However, only limited attention has been directed at developing wearable chemical sensors that offer more comprehensive information about a wearer’s well-being. The development of wearable chemical sensors faces multiple challenges on various fronts. This perspective reviews key challenges and technological gaps impeding the successful realization of effective wearable chemical sensor systems, related to materials, power, analytical procedure, communication, data acquisition, processing, and security. Size, rigidity, and operational requirements of present chemical sensors are incompatible with wearable technology. Sensor stability and on-body sensor surface regeneration constitute key analytical challenges. Similarly, present wearable power sources are incapable of meeting the requirements for wearable electronics owing to their l...

578 citations

Journal ArticleDOI
TL;DR: An all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Abstract: Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.

554 citations

Journal ArticleDOI
Tingting Yang1, Dan Xie1, Zhihong Li2, Zhihong Li1, Hongwei Zhu1 
TL;DR: Wearable tactile sensors as mentioned in this paper can collect mechanical property data of the human body and local environment, to provide valuable insights into the human health status or artificial intelligence systems, thus, emerging as a promising development direction toward the Internet of Things (IoT) applications.
Abstract: Tactile sensors, most commonly referred as strain and pressure sensors, can collect mechanical property data of the human body and local environment, to provide valuable insights into the human health status or artificial intelligence systems. The introduction of a high level of wearability (bendability and stretchability) to tactile sensors can dramatically enhance their interfaces with the contact objects, providing chronically reliable functions. Therefore, the developed wearable tactile sensors are capable of conformably covering arbitrary curved surface over their stiff counterparts without incurring damage, emerging as a promising development direction toward the Internet of Things (IoT) applications. Fundamental parameters of the wearable tactile sensors such as sensitivity and stretchability have experienced unprecedented advancement, owing to the progress of device fabrication techniques and material structural engineering. Moreover, novel smart materials and mechanically durable sensor design concepts endow these sensors with multi-functionality integration (e.g., simultaneous force, temperature and humidity detection, simultaneous pressure and strain discrimination) and stirring properties (e.g., biocompatibility, biodegradability, self-healing, self-powering and visualization), further broadening the application scope of current wearable tactile sensors. Besides, it is desirable that a tactile sensor is compatible with a printing process that presents a new era of feasible wearable technology due to its large-area and high-throughput production capability. In addition to the development of sensors, packaging, and integration of the rest of the tactile device system (data memory, signal conversion, power supply, wireless transmission, feedback actuator, etc.) to build a wearable platform also emerge as major research frontiers in recent years. This review attempts to summarize the current state-of-the-art wearable tactile sensors concerning basic concepts, functional materials, sensing mechanism, promising applications, performance optimization strategies, multifunctional sensing, and system integration. Finally, the discussion will be presented regarding potential challenges, pathways, and opportunities.

516 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this paper, a scaling solution for the Bethe lattice is proposed for cluster numbers and a scaling assumption for cluster number scaling assumptions for cluster radius and fractal dimension is proposed.
Abstract: Preface to the Second Edition Preface to the First Edition Introduction: Forest Fires, Fractal Oil Fields, and Diffusion What is percolation? Forest fires Oil fields and fractals Diffusion in disordered media Coming attractions Further reading Cluster Numbers The truth about percolation Exact solution in one dimension Small clusters and animals in d dimensions Exact solution for the Bethe lattice Towards a scaling solution for cluster numbers Scaling assumptions for cluster numbers Numerical tests Cluster numbers away from Pc Further reading Cluster Structure Is the cluster perimeter a real perimeter? Cluster radius and fractal dimension Another view on scaling The infinite cluster at the threshold Further reading Finite-size Scaling and the Renormalization Group Finite-size scaling Small cell renormalization Scaling revisited Large cell and Monte Carlo renormalization Connection to geometry Further reading Conductivity and Related Properties Conductivity of random resistor networks Internal structure of the infinite cluster Multitude of fractal dimensions on the incipient infinite cluster Multifractals Fractal models Renormalization group for internal cluster structure Continuum percolation, Swiss-cheese models and broad distributions Elastic networks Further reading Walks, Dynamics and Quantum Effects Ants in the labyrinth Probability distributions Fractons and superlocalization Hulls and external accessible perimeters Diffusion fronts Invasion percolation Further reading Application to Thermal Phase Transitions Statistical physics and the Ising model Dilute magnets at low temperatures History of droplet descriptions for fluids Droplet definition for the Ising model in zero field The trouble with Kertesz Applications Dilute magnets at finite temperatures Spin glasses Further reading Summary Numerical Techniques

9,830 citations

Book
01 Jan 1992
TL;DR: In this article, a scaling solution for the Bethe lattice is proposed for cluster numbers and a scaling assumption for cluster number scaling assumptions for cluster radius and fractal dimension is proposed.
Abstract: Preface to the Second Edition Preface to the First Edition Introduction: Forest Fires, Fractal Oil Fields, and Diffusion What is percolation? Forest fires Oil fields and fractals Diffusion in disordered media Coming attractions Further reading Cluster Numbers The truth about percolation Exact solution in one dimension Small clusters and animals in d dimensions Exact solution for the Bethe lattice Towards a scaling solution for cluster numbers Scaling assumptions for cluster numbers Numerical tests Cluster numbers away from Pc Further reading Cluster Structure Is the cluster perimeter a real perimeter? Cluster radius and fractal dimension Another view on scaling The infinite cluster at the threshold Further reading Finite-size Scaling and the Renormalization Group Finite-size scaling Small cell renormalization Scaling revisited Large cell and Monte Carlo renormalization Connection to geometry Further reading Conductivity and Related Properties Conductivity of random resistor networks Internal structure of the infinite cluster Multitude of fractal dimensions on the incipient infinite cluster Multifractals Fractal models Renormalization group for internal cluster structure Continuum percolation, Swiss-cheese models and broad distributions Elastic networks Further reading Walks, Dynamics and Quantum Effects Ants in the labyrinth Probability distributions Fractons and superlocalization Hulls and external accessible perimeters Diffusion fronts Invasion percolation Further reading Application to Thermal Phase Transitions Statistical physics and the Ising model Dilute magnets at low temperatures History of droplet descriptions for fluids Droplet definition for the Ising model in zero field The trouble with Kertesz Applications Dilute magnets at finite temperatures Spin glasses Further reading Summary Numerical Techniques

7,349 citations

Journal ArticleDOI
TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Abstract: Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm−1 in the stretched state.

2,847 citations

Journal ArticleDOI
TL;DR: A class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes capable of measuring strains up to 280% with high durability, fast response and low creep is reported.
Abstract: Thin films of single-wall carbon nanotube have been used to create stretchable devices that can be incorporated into clothes and used to detect human motions.

2,790 citations