scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing

05 Mar 2021-Advanced Science (Wiley)-Vol. 8, Iss: 8, pp 2003627-2003627
TL;DR: In this paper, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels.
Abstract: Treatment of wounds in special areas is challenging due to inevitable movements and difficult fixation. Common cotton gauze suffers from incomplete joint surface coverage, confinement of joint movement, lack of antibacterial function, and frequent replacements. Hydrogels have been considered as good candidates for wound dressing because of their good flexibility and biocompatibility. Nevertheless, the adhesive, mechanical, and antibacterial properties of conventional hydrogels are not satisfactory. Herein, cationic polyelectrolyte brushes grafted from bacterial cellulose (BC) nanofibers are introduced into polydopamine/polyacrylamide hydrogels. The 1D polymer brushes have rigid BC backbones to enhance mechanical property of hydrogels, realizing high tensile strength (21-51 kPa), large tensile strain (899-1047%), and ideal compressive property. Positively charged quaternary ammonium groups of tethered polymer brushes provide long-lasting antibacterial property to hydrogels and promote crawling and proliferation of negatively charged epidermis cells. Moreover, the hydrogels are rich in catechol groups and capable of adhering to various surfaces, meeting adhesive demand of large movement for special areas. With the above merits, the hydrogels demonstrate less inflammatory response and faster healing speed for in vivo wound healing on rats. Therefore, the multifunctional hydrogels show stable covering, little displacement, long-lasting antibacteria, and fast wound healing, demonstrating promise in wound dressing.
Citations
More filters
Journal ArticleDOI
TL;DR: This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Abstract: Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.

124 citations

Journal ArticleDOI
TL;DR: A comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported as discussed by the authors , however, a comprehensive review of wound dressing can be found in this paper.

102 citations

Journal ArticleDOI
20 Jan 2022-ACS Nano
TL;DR: An educational review on the accumulating knowledge in this multidisciplinary area to lay out the challenges and opportunities that lie ahead and ignite the further and faster development of clinically valuable technologies in nanomaterial-based wound dressings.
Abstract: Wound dressings based on nanomaterials play a crucial role in wound treatment and are widely used in a whole range of medical settings, from minor to life-threatening tissue injuries. This article presents an educational review on the accumulating knowledge in this multidisciplinary area to lay out the challenges and opportunities that lie ahead and ignite the further and faster development of clinically valuable technologies. The review analyzes the functional advantages of nanomaterial-based gauzes and hydrogels as well as hybrid structures thereof. On this basis, the review presents state-of-the-art advances to transfer the (semi)blind approaches to the evaluation of a wound state to smart wound dressings that enable real-time monitoring and diagnostic functions that could help in wound evaluation during healing. This review explores the translation of nanomaterial-based wound dressings and related medical aspects into real-world use. The ongoing challenges and future opportunities associated with nanomaterial-based wound dressings and related clinical decisions are presented and reviewed.

99 citations

Journal ArticleDOI
17 Oct 2021-Small
TL;DR: In this article, a review summarizes the properties of conductive hydrogels and their application in the fabrication of strain sensors working in different modes, and a brief prospectus for the development of conductively hydrogel-based strain sensors in the future is provided.
Abstract: Conductive hydrogels can be prepared by incorporating various conductive materials into polymeric network hydrogels. In recent years, conductive hydrogels have been developed and applied in the field of strain sensors owing to their unique properties, such as electrical conductivity, mechanical properties, self-healing, and anti-freezing properties. These remarkable properties allow conductive hydrogel-based strain sensors to show excellent performance for identifying external stimuli and detecting human body movement, even at subzero temperatures. This review summarizes the properties of conductive hydrogels and their application in the fabrication of strain sensors working in different modes. Finally, a brief prospectus for the development of conductive hydrogels in the future is provided.

96 citations

References
More filters
Journal ArticleDOI
24 Feb 2009-ACS Nano
TL;DR: A possible mechanism of toxicity is proposed which involves disruption of the mitochondrial respiratory chain by Ag-np leading to production of ROS and interruption of ATP synthesis, which in turn cause DNA damage.
Abstract: Silver nanoparticles (Ag-np) are being used increasingly in wound dressings, catheters, and various household products due to their antimicrobial activity. The toxicity of starch-coated silver nanoparticles was studied using normal human lung fibroblast cells (IMR-90) and human glioblastoma cells (U251). The toxicity was evaluated using changes in cell morphology, cell viability, metabolic activity, and oxidative stress. Ag-np reduced ATP content of the cell caused damage to mitochondria and increased production of reactive oxygen species (ROS) in a dose-dependent manner. DNA damage, as measured by single cell gel electrophoresis (SCGE) and cytokinesis blocked micronucleus assay (CBMN), was also dose-dependent and more prominent in the cancer cells. The nanoparticle treatment caused cell cycle arrest in G2/M phase possibly due to repair of damaged DNA. Annexin-V propidium iodide (PI) staining showed no massive apoptosis or necrosis. The transmission electron microscopic (TEM) analysis indicated the presen...

3,261 citations

Journal ArticleDOI
TL;DR: Mussels attach to solid surfaces in the sea and their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave.
Abstract: Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications.

1,380 citations

Journal ArticleDOI
TL;DR: The antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.

1,326 citations

Journal ArticleDOI
TL;DR: In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model.

1,102 citations

Journal ArticleDOI
TL;DR: The authors report on the development of injectable, biocompatible carbon nanotube reinforced quaternized chitosan cryogels with shape memory, conductivity and antibacterial properties for hemostatic control for lethal noncompressible hemorrhage hemostasis and wound healing.
Abstract: Developing injectable antibacterial and conductive shape memory hemostatic with high blood absorption and fast recovery for irregularly shaped and noncompressible hemorrhage remains a challenge. Here we report injectable antibacterial conductive cryogels based on carbon nanotube (CNT) and glycidyl methacrylate functionalized quaternized chitosan for lethal noncompressible hemorrhage hemostasis and wound healing. These cryogels present robust mechanical strength, rapid blood-triggered shape recovery and absorption speed, and high blood uptake capacity. Moreover, cryogels show better blood-clotting ability, higher blood cell and platelet adhesion and activation than gelatin sponge and gauze. Cryogel with 4 mg/mL CNT (QCSG/CNT4) shows better hemostatic capability than gauze and gelatin hemostatic sponge in mouse-liver injury model and mouse-tail amputation model, and better wound healing performance than Tegaderm™ film. Importantly, QCSG/CNT4 presents excellent hemostatic performance in rabbit liver defect lethal noncompressible hemorrhage model and even better hemostatic ability than Combat Gauze in standardized circular liver bleeding model.

687 citations