scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Highly stretchable and tough hydrogels

TL;DR: The synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks is reported, finding that these gels’ toughness is attributed to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping thenetwork of ionic crosslinks.
Abstract: Hydrogels with improved mechanical properties, made by combining polymer networks with ionic and covalent crosslinks, should expand the scope of applications, and may serve as model systems to explore mechanisms of deformation and energy dissipation. Hydrogels are used in flexible contact lenses, as scaffolds for tissue engineering and in drug delivery. Their poor mechanical properties have so far limited the scope of their applications, but new strong and stretchy materials reported here could take hydrogels into uncharted territories. The new system involves a double-network gel, with one network forming ionic crosslinks and the other forming covalent crosslinks. The fracture energy of these materials is very high: they can stretch to beyond 17 times their own length even when containing defects that usually initiate crack formation in hydrogels. The materials' toughness is attributed to crack bridging by the covalent network accompanied by energy dissipation through unzipping of the ionic crosslinks in the second network. Hydrogels are used as scaffolds for tissue engineering1, vehicles for drug delivery2, actuators for optics and fluidics3, and model extracellular matrices for biological studies4. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour5. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels6,7 have achieved stretches in the range 10–20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m−2 (ref. 8), as compared with ∼1,000 J m−2 for cartilage9 and ∼10,000 J m−2 for natural rubbers10. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties11,12,13,14,15,16,17,18; certain synthetic gels have reached fracture energies of 100–1,000 J m−2 (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m−2. Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels’ toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This Review discusses how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation, and collects experimental release data from the literature and presents quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Abstract: Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

2,457 citations

Journal ArticleDOI
TL;DR: Emerging soft-bodied robotic systems are reviewed to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments and to reduce the mechanical and algorithmic complexity involved in robot design.

1,604 citations

Journal ArticleDOI
05 May 2017-Science
TL;DR: The advances in making hydrogels with improved mechanical strength and greater flexibility for use in a wide range of applications are reviewed, foreseeing opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales.
Abstract: BACKGROUND Hydrogels are formed through the cross-linking of hydrophilic polymer chains within an aqueous microenvironment. The gelation can be achieved through a variety of mechanisms, spanning physical entanglement of polymer chains, electrostatic interactions, and covalent chemical cross-linking. The water-rich nature of hydrogels makes them broadly applicable to many areas, including tissue engineering, drug delivery, soft electronics, and actuators. Conventional hydrogels usually possess limited mechanical strength and are prone to permanent breakage. The lack of desired dynamic cues and structural complexity within the hydrogels has further limited their functions. Broadened applications of hydrogels, however, require advanced engineering of parameters such as mechanics and spatiotemporal presentation of active or bioactive moieties, as well as manipulation of multiscale shape, structure, and architecture. ADVANCES Hydrogels with substantially improved physicochemical properties have been enabled by rational design at the molecular level and control over multiscale architecture. For example, formulations that combine permanent polymer networks with reversibly bonding chains for energy dissipation show strong toughness and stretchability. Similar strategies may also substantially enhance the bonding affinity of hydrogels at interfaces with solids by covalently anchoring the polymer networks of tough hydrogels onto solid surfaces. Shear-thinning hydrogels that feature reversible bonds impart a fluidic nature upon application of shear forces and return back to their gel states once the forces are released. Self-healing hydrogels based on nanomaterial hybridization, electrostatic interactions, and slide-ring configurations exhibit excellent abilities in spontaneously healing themselves after damages. Additionally, harnessing techniques that can dynamically and precisely configure hydrogels have resulted in flexibility to regulate their architecture, activity, and functionality. Dynamic modulations of polymer chain physics and chemistry can lead to temporal alteration of hydrogel structures in a programmed manner. Three-dimensional printing enables architectural control of hydrogels at high precision, with a potential to further integrate elements that enable change of hydrogel configurations along prescribed paths. OUTLOOK We envision the continuation of innovation in new bioorthogonal chemistries for making hydrogels, enabling their fabrication in the presence of biological species without impairing cellular or biomolecule functions. We also foresee opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales. In addition, technologies that precisely regulate the physicochemical properties of hydrogels in spatiotemporally controlled manners are crucial in controlling their dynamics, such as degradation and dynamic presentation of biomolecules. We believe that the fabrication of hydrogels should be coupled with end applications in a feedback loop in order to achieve optimal designs through iterations. In the end, it is the combination of multiscale constituents and complementary strategies that will enable new applications of this important class of materials.

1,588 citations


Cites background or methods from "Highly stretchable and tough hydrog..."

  • ...Alternatively, hydrogels formed throughhybridizationwith nanomaterials (39, 48), via crystallite cross-linking (49), or bymixingmultiple components (38, 41, 50), may possess substantially improved mechanical properties (51)....

    [...]

  • ...[Adapted with permission from (41), copyright 2012 Nature...

    [...]

Journal ArticleDOI
TL;DR: It is reported that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties.
Abstract: Hydrogels attract great attention as biomaterials as a result of their soft and wet nature, similar to that of biological tissues. Recent inventions of several tough hydrogels show their potential as structural biomaterials, such as cartilage. Any given application, however, requires a combination of mechanical properties including stiffness, strength, toughness, damping, fatigue resistance and self-healing, along with biocompatibility. This combination is rarely realized. Here, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties. The randomness makes ionic bonds of a wide distribution of strength. The strong bonds serve as permanent crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. These physical hydrogels of supramolecular structure can be tuned to change multiple mechanical properties over wide ranges by using diverse ionic combinations. This polyampholyte approach is synthetically simple and dramatically increases the choice of tough hydrogels for applications.

1,496 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: A class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts are described.
Abstract: Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. We demonstrate a transparent actuator that can generate large strains and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.

1,331 citations


Cites background from "Highly stretchable and tough hydrog..."

  • ...Many ionic conductors, such as hydrogels (20) and gels swollen with ionic liquids (21), take a solid form, and are stretchable and transparent....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that when a material is so soft that the cohesive strength (or adhesive strength, in the case of interfacial fracture) exceeds the elastic modulus of the material, a crack will blunt instead of propagating.
Abstract: When a material is so soft that the cohesive strength (or adhesive strength, in the case of interfacial fracture) exceeds the elastic modulus of the material, we show that a crack will blunt instead of propagating. Large–deformation finite–element model (FEM) simulations of crack initiation, in which the debonding processes are quantified using a cohesive zone model, are used to support this hypothesis. An approximate analytic solution, which agrees well with the FEM simulation, gives additional insight into the blunting process. The consequence of this result on the strength of soft, rubbery materials is the main topic of this paper. We propose two mechanisms by which crack growth can occur in such blunted regions. We have also performed experiments on two different elastomers to demonstrate elastic blunting. In one system, we present some details on a void growth mechanism for ultimate failure, post–blunting. Finally, we demonstrate how crack blunting can shed light on some long–standing problems in the area of adhesion and fracture of elastomers.

227 citations


"Highly stretchable and tough hydrog..." refers background in this paper

  • ...An elastic gel is known to be brittle and notch-sensitive—that is, the high stretchability and strength drop markedly when samples contain notches, or any other features that cause inhomogeneous deformation [19]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the use of an energy-efficient approach to treat fatigue and fracture in elastomers is reviewed, including tearing, crack growth and fatigue, tensile failure, oxidative effects, environmental cracking, cutting by sharp objects, abrasion, adhesion, friction and cavitation.
Abstract: The use of an energetics approach to treat various aspects of fatigue and fracture in elastomers is reviewed. Topics covered include tearing, crack growth and fatigue, tensile failure, oxidative effects, environmental cracking, cutting by sharp objects, abrasion, adhesion, friction (under circumstances where it is determined mainly by the making and breaking of contact), and cavitation. Application of the approach to service problems is also considered. Finally, physical and chemical factors affecting the crack growth characteristics—the material property linking various types of cohesive failure—are discussed.

226 citations

Journal ArticleDOI
TL;DR: This study demonstrates a novel approach to independently control different mechanical properties of gels by investigating various aspects of gel cross-linking to independently regulate the elastic modulus (E) and toughness (W).
Abstract: Refined control over the mechanical properties of hydrogel-based materials has increased as these materials have found broader application. We investigated various aspects of gel cross-linking to independently regulate the elastic modulus (E) and toughness (W). Alginate hydrogels were chosen as a model system, since alginate can be gelled via ionic or covalent cross-linking, and its block structure dictates the structure of ionic cross-links. Increasing the density of covalent cross-links increased E but led to more brittle gels. In contrast, increasing the density of ionic cross-links and length of the blocks responsible for the cross-linking increased both E and W. Oscillatory shear measurements suggested that ionic cross-links and their length were important in dissipating the energy of deformation due to a partial and stepwise de-cross-linking. In contrast, covalently cross-linked gels underwent energy accumulation. This study demonstrates a novel approach to independently control different mechanical properties of gels.

195 citations


"Highly stretchable and tough hydrog..." refers background in this paper

  • ...As the stretch increases, the alginate network unzips progressively [23], while the polyacrylamide network remains intact, so that the hybrid gel exhibits pronounced hysteresis and little permanent deformation....

    [...]

Journal ArticleDOI

154 citations


"Highly stretchable and tough hydrog..." refers background in this paper

  • ...The fracture energy of the alginate-polyacrylamide hybrid gel, however, is much larger than previously reported values of tough synthetic gels (100–1000 J/m2) [14,17,20,28], a finding which we attribute to how the alginate network unzips....

    [...]

  • ...When the gel is stretched, the short-chain network ruptures and dissipates energy [20]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the rate dependence of fracture has been studied in a series of physically associating triblock copolymer gels that have a well-defined molecular structure, and compressive experiments were performed to develop a strain energy function that accurately captures the strain hardening behavior of these materials.
Abstract: The rate dependence of fracture has been studied in a series of physically associating triblock copolymer gels that have a well-defined molecular structure. Compressive experiments were performed to develop a strain energy function that accurately captures the strain hardening behavior of these materials. This same strain energy function was utilized in a finite element model of the crack tip stresses, which become highly anisotropic at stress values below the failure strength of the gels. The rate dependence of the energy release rate, G, is independent of the gel concentration when G is normalized by the small strain Young's modulus, E. The gels exhibit a transition from rough, slow crack propagation to smooth, fast crack propagation for a well-defined value of the characteristic length, G/E.

133 citations


"Highly stretchable and tough hydrog..." refers background in this paper

  • ...The fracture energy of the alginate-polyacrylamide hybrid gel, however, is much larger than previously reported values of tough synthetic gels (100–1000 J/m2) [14,17,20,28], a finding which we attribute to how the alginate network unzips....

    [...]

  • ...Intense efforts are devoted to synthesizing hydrogels of enhanced mechanical properties [11–18]; certain synthetic gels have reached fracture energy of 100–1000 J/m2 [11,14,17]....

    [...]