scispace - formally typeset
Journal ArticleDOI

Highly Transparent, Stretchable, and Self-Healing Ionic-Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications.

Reads0
Chats0
TLDR
The IS-TENG represents the first prototype of a highly deformable and transparent power source that is able to autonomously self-heal quickly and repeatedly at room temperature, and thus can be used as a power supply for digital watches, touch sensors, artificial intelligence, and biointegrated electronics.
Abstract
Recently developed triboelectric nanogenerators (TENGs) act as a promising power source for self-powered electronic devices. However, the majority of TENGs are fabricated using metallic electrodes and cannot achieve high stretchability and transparency, simultaneously. Here, slime-based ionic conductors are used as transparent current-collecting layers of TENG, thus significantly enhancing their energy generation, stretchability, transparency, and instilling self-healing characteristics. This is the first demonstration of using an ionic conductor as the current collector in a mechanical energy harvester. The resulting ionic-skin TENG (IS-TENG) has a transparency of 92% transmittance, and its energy-harvesting performance is 12 times higher than that of the silver-based electronic current collectors. In addition, they are capable of enduring a uniaxial strain up to 700%, giving the highest performance compared to all other transparent and stretchable mechanical-energy harvesters. Additionally, this is the first demonstration of an autonomously self-healing TENG that can recover its performance even after 300 times of complete bifurcation. The IS-TENG represents the first prototype of a highly deformable and transparent power source that is able to autonomously self-heal quickly and repeatedly at room temperature, and thus can be used as a power supply for digital watches, touch sensors, artificial intelligence, and biointegrated electronics.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Bio-Integrated Wearable Systems: A Comprehensive Review

TL;DR: This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care.
Journal ArticleDOI

Materials and structural designs of stretchable conductors

TL;DR: This review covers recent advances in stretchable conductors, which have been achieved by engineering their structures, materials, or both to provide insight into which class of stretchable conductor is suitable for fabrication of various stretchable electronic devices.
References
More filters
Journal ArticleDOI

An ultra-lightweight design for imperceptible plastic electronics

TL;DR: In this paper, the authors present a platform that makes electronics both virtually unbreakable and imperceptible on polyimide polysilicon elastomers, which can be operated at high temperatures and in aqueous environments.
Journal ArticleDOI

Pursuing prosthetic electronic skin.

TL;DR: This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Journal ArticleDOI

Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors

TL;DR: A comprehensive review of the four modes, their theoretical modelling, and the applications of TENGs for harvesting energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water and more as well as self-powered sensors is provided in this article.
Journal ArticleDOI

Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

TL;DR: It is found that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process.
Related Papers (5)