scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning

06 Nov 2017-pp 1797-1806
TL;DR: Empirical results show that HIN2Vec soundly outperforms the state-of-the-art representation learning models for network data, including DeepWalk, LINE, node2vec, PTE, HINE and ESim, by 6.6% to 23.8% of $micro$-$f_1$ in multi-label node classification and 5% to 70.8%, in link prediction.
Abstract: In this paper, we propose a novel representation learning framework, namely HIN2Vec, for heterogeneous information networks (HINs). The core of the proposed framework is a neural network model, also called HIN2Vec, designed to capture the rich semantics embedded in HINs by exploiting different types of relationships among nodes. Given a set of relationships specified in forms of meta-paths in an HIN, HIN2Vec carries out multiple prediction training tasks jointly based on a target set of relationships to learn latent vectors of nodes and meta-paths in the HIN. In addition to model design, several issues unique to HIN2Vec, including regularization of meta-path vectors, node type selection in negative sampling, and cycles in random walks, are examined. To validate our ideas, we learn latent vectors of nodes using four large-scale real HIN datasets, including Blogcatalog, Yelp, DBLP and U.S. Patents, and use them as features for multi-label node classification and link prediction applications on those networks. Empirical results show that HIN2Vec soundly outperforms the state-of-the-art representation learning models for network data, including DeepWalk, LINE, node2vec, PTE, HINE and ESim, by 6.6% to 23.8% of $micro$-$f_1$ in multi-label node classification and 5% to 70.8% of $MAP$ in link prediction.
Citations
More filters
Proceedings ArticleDOI
13 May 2019
TL;DR: Wang et al. as discussed by the authors proposed a heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions, which can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner.
Abstract: Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its meta-path based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.

1,467 citations

Journal ArticleDOI
TL;DR: A novel heterogeneous network embedding based approach for HIN based recommendation, called HERec is proposed, which shows the capability of the HERec model for the cold-start problem, and reveals that the transformed embedding information from HINs can improve the recommendation performance.
Abstract: Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in recommender systems, called HIN based recommendation . It is challenging to develop effective methods for HIN based recommendation in both extraction and exploitation of the information from HINs. Most of HIN based recommendation methods rely on path based similarity, which cannot fully mine latent structure features of users and items. In this paper, we propose a novel heterogeneous network embedding based approach for HIN based recommendation, called HERec. To embed HINs, we design a meta-path based random walk strategy to generate meaningful node sequences for network embedding. The learned node embeddings are first transformed by a set of fusion functions, and subsequently integrated into an extended matrix factorization (MF) model. The extended MF model together with fusion functions are jointly optimized for the rating prediction task. Extensive experiments on three real-world datasets demonstrate the effectiveness of the HERec model. Moreover, we show the capability of the HERec model for the cold-start problem, and reveal that the transformed embedding information from HINs can improve the recommendation performance.

768 citations


Cites methods from "HIN2Vec: Explore Meta-paths in Hete..."

  • ...[59] utilize a neural network model to capture rich relation semantics inHIN....

    [...]

Journal ArticleDOI
TL;DR: Network representation learning as discussed by the authors is a new learning paradigm to embed network vertices into a low-dimensional vector space, by preserving network topology structure, vertex content, and other side information.
Abstract: With the widespread use of information technologies, information networks are becoming increasingly popular to capture complex relationships across various disciplines, such as social networks, citation networks, telecommunication networks, and biological networks. Analyzing these networks sheds light on different aspects of social life such as the structure of societies, information diffusion, and communication patterns. In reality, however, the large scale of information networks often makes network analytic tasks computationally expensive or intractable. Network representation learning has been recently proposed as a new learning paradigm to embed network vertices into a low-dimensional vector space, by preserving network topology structure, vertex content, and other side information. This facilitates the original network to be easily handled in the new vector space for further analysis. In this survey, we perform a comprehensive review of the current literature on network representation learning in the data mining and machine learning field. We propose new taxonomies to categorize and summarize the state-of-the-art network representation learning techniques according to the underlying learning mechanisms, the network information intended to preserve, as well as the algorithmic designs and methodologies. We summarize evaluation protocols used for validating network representation learning including published benchmark datasets, evaluation methods, and open source algorithms. We also perform empirical studies to compare the performance of representative algorithms on common datasets, and analyze their computational complexity. Finally, we suggest promising research directions to facilitate future study.

494 citations

Proceedings ArticleDOI
19 Jul 2018
TL;DR: A novel deep neural network with the co-attention mechanism for leveraging rich meta-path based context for top-N recommendation and performs well in the cold-start scenario and has potentially good interpretability for the recommendation results.
Abstract: Heterogeneous information network (HIN) has been widely adopted in recommender systems due to its excellence in modeling complex context information. Although existing HIN based recommendation methods have achieved performance improvement to some extent, they have two major shortcomings. First, these models seldom learn an explicit representation for path or meta-path in the recommendation task. Second, they do not consider the mutual effect between the meta-path and the involved user-item pair in an interaction. To address these issues, we develop a novel deep neural network with the co-attention mechanism for leveraging rich meta-path based context for top-N recommendation. We elaborately design a three-way neural interaction model by explicitly incorporating meta-path based context. To construct the meta-path based context, we propose to use a priority based sampling technique to select high-quality path instances. Our model is able to learn effective representations for users, items and meta-path based context for implementing a powerful interaction function. The co-attention mechanism improves the representations for meta-path based con- text, users and items in a mutual enhancement way. Extensive experiments on three real-world datasets have demonstrated the effectiveness of the proposed model. In particular, the proposed model performs well in the cold-start scenario and has potentially good interpretability for the recommendation results.

482 citations


Additional excerpts

  • ...al [6] learn node embedding to capture rich relation semantics in HIN via neural network model....

    [...]

Proceedings ArticleDOI
20 Apr 2020
TL;DR: This work proposes a new model named Metapath Aggregated Graph Neural Network (MAGNN), which achieves more accurate prediction results than state-of-the-art baselines and employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metal aggregation to combine messages from multiple metapaths.
Abstract: A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

352 citations


Cites background or methods from "HIN2Vec: Explore Meta-paths in Hete..."

  • ...fed to a skip-gram model [19] to generate node embeddings. Given user-defined metapaths, ESim [22] generates node embeddings by learning from sampled positive and negative metapath instances. HIN2vec [11] carries out multiple prediction training tasks to learn representations of nodes and metapaths of a heterogeneous graph. Given a metapath, HERec [23] converts a heterogeneousgraphintoahomogeneousgrap...

    [...]

  • ...wing limitations. (1) The model does not leverage node content features, so it rarely performs well on heterogeneous graphs with rich node content features (e.g., metapath2vec [9], ESim [22], HIN2vec [11], and HERec [23]). (2) The model discards all intermediate nodes along the metapath by only considering two end nodes, which results in information loss (e.g., HERec [23] and HAN [31]). (3) The model ...

    [...]

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations


"HIN2Vec: Explore Meta-paths in Hete..." refers background in this paper

  • ...Network data analysis and mining is an important research field because network data, capturing phenomena in various networks, such as social networks, paper citation networks, and World Wide Web, are ubiquitous in the real world [6, 15, 29]....

    [...]

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations


"HIN2Vec: Explore Meta-paths in Hete..." refers background in this paper

  • ...Network data analysis and mining is an important research field because network data, capturing phenomena in various networks, such as social networks, paper citation networks, and World Wide Web, are ubiquitous in the real world [6, 15, 29]....

    [...]

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations


"HIN2Vec: Explore Meta-paths in Hete..." refers background in this paper

  • ...Among the various approaches of representation learning, the neural network based learning models have received significant attention in recent years, and achieved successes in several empirical research studies of various domains, including speech recognition [12, 22], computer vision [9, 16], and natural language processing (NLP) [21]....

    [...]

Proceedings Article
Tomas Mikolov1, Ilya Sutskever1, Kai Chen1, Greg S. Corrado1, Jeffrey Dean1 
05 Dec 2013
TL;DR: This paper presents a simple method for finding phrases in text, and shows that learning good vector representations for millions of phrases is possible and describes a simple alternative to the hierarchical softmax called negative sampling.
Abstract: The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.

24,012 citations


"HIN2Vec: Explore Meta-paths in Hete..." refers background in this paper

  • ...Thus, while generating positive samples via random walks, we also generate negative data entries following the ideas of negative sampling in Word2Vec [21]....

    [...]

  • ...Among the various approaches of representation learning, the neural network based learning models have received significant attention in recent years, and achieved successes in several empirical research studies of various domains, including speech recognition [12, 22], computer vision [9, 16], and natural language processing (NLP) [21]....

    [...]