scispace - formally typeset
Open AccessJournal ArticleDOI

Histone dynamics during DNA replication stress

Reads0
Chats0
TLDR
In this article, the authors summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms and uncover links between defects in replication stresses responses and genome instability or various diseases, such as cancer.
Abstract
Accurate and complete replication of the genome is essential not only for genome stability but also for cell viability. However, cells face constant threats to the replication process, such as spontaneous DNA modifications and DNA lesions from endogenous and external sources. Any obstacle that slows down replication forks or perturbs replication dynamics is generally considered to be a form of replication stress, and the past decade has seen numerous advances in our understanding of how cells respond to and resolve such challenges. Furthermore, recent studies have also uncovered links between defects in replication stress responses and genome instability or various diseases, such as cancer. Because replication stress takes place in the context of chromatin, histone dynamics play key roles in modulating fork progression and replication stress responses. Here, we summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF.

TL;DR: This technique provides a robust methodology to determine protein recruitment and modifications at the replication fork with single-cell resolution.
References
More filters
Journal ArticleDOI

Crystal structure of the nucleosome core particle at 2.8 Å resolution

TL;DR: The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it.
Journal ArticleDOI

The DNA Damage Response: Making It Safe to Play with Knives

TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.
Journal ArticleDOI

Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints

TL;DR: The molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed and apoptosis, which eliminates heavily damaged or seriously deregulated cells, is analyzed.
Journal ArticleDOI

Causes and consequences of replication stress.

TL;DR: In this paper, the kinase ATR (ATM- and Rad3-related) stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability.
Journal ArticleDOI

The structure of DNA in the nucleosome core

TL;DR: Comparison of the 147-base-pair structure with two 146- base-pair structures reveals alterations in DNA twist that are evidently common in bulk chromatin, and which are of probable importance for chromatin fibre formation and chromatin remodelling.
Related Papers (5)