scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hitting probabilities of weighted Poisson processes with different intensities and their subordinations

01 Jan 2021-Acta Mathematica Scientia (Springer Singapore)-Vol. 41, Iss: 1, pp 67-84
TL;DR: In this article, the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities were studied. And the authors analyzed the hitting probability in different weights and gave an example in the case of subordination.
About: This article is published in Acta Mathematica Scientia.The article was published on 2021-01-01. It has received 4 citations till now. The article focuses on the topics: Poisson distribution & Subordination (linguistics).
Citations
More filters
Journal ArticleDOI
TL;DR: The generalized fractional counting process (GFCP) was introduced and studied by Di Crescenzo et al. as discussed by the authors , and its covariance structure is studied, using which its long-range dependence property is established.
Abstract: In this paper, we obtain additional results for a fractional counting process introduced and studied by Di Crescenzo et al. [8]. For convenience, we call it the generalized fractional counting process (GFCP). It is shown that the one-dimensional distributions of the GFCP are not infinitely divisible. Its covariance structure is studied, using which its long-range dependence property is established. It is shown that the increments of GFCP exhibit the short-range dependence property. Also, we prove that the GFCP is a scaling limit of some continuous time random walk. A particular case of the GFCP, namely, the generalized counting process (GCP), is discussed for which we obtain a limiting result and a martingale result and establish a recurrence relation for its probability mass function. We have shown that many known counting processes such as the Poisson process of order k, the Pólya-Aeppli process of order k, the negative binomial process and their fractional versions etc., are other special cases of the GFCP. An application of the GCP to risk theory is discussed.

4 citations

Posted Content
TL;DR: The generalized fractional counting process (GFCP) was introduced and studied by Di Crescenzo et al. as mentioned in this paper, and its covariance structure is studied using which its long-range dependence property is established.
Abstract: In this paper, we obtain additional results for a fractional counting process introduced and studied by Di Crescenzo et al. (2016). For convenience, we call it the generalized fractional counting process (GFCP). It is shown that the one-dimensional distributions of the GFCP are not infinitely divisible. Its covariance structure is studied using which its long-range dependence property is established. It is shown that the increments of GFCP exhibits the short-range dependence property. Also, we prove that the GFCP is a scaling limit of some continuous time random walk. A particular case of the GFCP, namely, the generalized counting process (GCP) is discussed for which we obtain a limiting result, a martingale result and establish a recurrence relation for its probability mass function. We have shown that many known counting processes such as the Poisson process of order $k$, the Polya-Aeppli process of order $k$, the negative binomial process and their fractional versions etc. are other special cases of the GFCP. An application of the GCP to risk theory is discussed.

2 citations

Journal ArticleDOI
TL;DR: In this article , the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator, and it is observed that the GFSP is a Skellham type version of the generalized fractional counting process (GFCP), which is a fractional variant of the GCP.
Abstract: In this paper, we study a Skellam type variant of the generalized counting process (GCP), namely, the generalized Skellam process. Some of its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained. Its fractional version, namely, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator. It is observed that the GFSP is a Skellam type version of the generalized fractional counting process (GFCP) which is a fractional variant of the GCP. It is shown that the one-dimensional distributions of the GFSP are not infinitely divisible. An integral representation for its state probabilities is obtained. We establish its long-range dependence property by using its variance and covariance structure. Also, we consider two time-changed versions of the GFCP. These are obtained by time-changing the GFCP by an independent Lévy subordinator and its inverse. Some particular cases of these time-changed processes are discussed by considering specific Lévy subordinators.
Posted Content
TL;DR: In this paper, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator, and its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained.
Abstract: In this paper, we study a Skellam type variant of the generalized counting process (GCP), namely, the generalized Skellam process. Some of its distributional properties such as the probability mass function, probability generating function, mean, variance and covariance are obtained. Its fractional version, namely, the generalized fractional Skellam process (GFSP) is considered by time-changing it with an independent inverse stable subordinator. It is observed that the GFSP is a Skellam type version of the generalized fractional counting process (GFCP) which is a fractional variant of the GCP. It is shown that the one-dimensional distributions of the GFSP are not infinitely divisible. An integral representation for its state probabilities is obtained. We establish its long-range dependence property by using its variance and covariance structure. Also, we consider two time-changed versions of the GFCP. These are obtained by time-changing the GFCP by an independent Levy subordinator and its inverse. Some particular cases of these time-changed processes are discussed by considering specific Levy subordinators.
References
More filters
Book
13 Nov 1999

3,839 citations

BookDOI
30 Dec 2003
TL;DR: In this article, the authors provide a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists.
Abstract: WINNER of a Riskbook.com Best of 2004 Book Award!During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Levy processes are beyond their reach.Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations.Topics covered in this book include: jump-diffusion models, Levy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms.This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

3,210 citations

Book
01 Jan 2004
TL;DR: In this paper, the authors present a general theory of Levy processes and a stochastic calculus for Levy processes in a direct and accessible way, including necessary and sufficient conditions for Levy process to have finite moments.
Abstract: Levy processes form a wide and rich class of random process, and have many applications ranging from physics to finance Stochastic calculus is the mathematics of systems interacting with random noise Here, the author ties these two subjects together, beginning with an introduction to the general theory of Levy processes, then leading on to develop the stochastic calculus for Levy processes in a direct and accessible way This fully revised edition now features a number of new topics These include: regular variation and subexponential distributions; necessary and sufficient conditions for Levy processes to have finite moments; characterisation of Levy processes with finite variation; Kunita's estimates for moments of Levy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Levy processes; multiple Wiener-Levy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Levy-driven SDEs

2,908 citations

MonographDOI
01 Jan 2009

902 citations

Journal ArticleDOI
TL;DR: In this article, a fractional non-Markov Poisson stochastic process has been developed based on fractional generalization of the Kolmogorov-Feller equation.

302 citations