scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Homing of mucosal leukocytes to joints. Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion.

01 May 1997-Journal of Clinical Investigation (American Society for Clinical Investigation)-Vol. 99, Iss: 9, pp 2165-2172
TL;DR: End endothelial P-selectin and VAP-1 mediate binding of mucosal effector cells to synovium in a leukocyte subtype-selective manner and antiadhesive therapy against these inducible molecules should ablate the pathogenetic cascade leading to inappropriate homing of leukocytes to joints in arthritis.
Abstract: Inflammation and infection of the gut can be followed by reactive arthritis at a distant joint. Leukocyte recruitment into synovium is essential for this process, but nothing is known about the endothelial adhesion molecules in synovial membrane which direct the homing of activated, gut-derived leukocytes to joints. Here we analyzed the expression of the known endothelial adhesion molecules in inflamed synovium and their function in binding of mucosal leukocytes. Intercellular adhesion molecule-1 (ICAM-1/CD54) and vascular adhesion protein-1 (VAP-1) were most prominently expressed in synovial vessels. All other adhesion molecules were found at lower levels in inflamed synovia, except mucosal addressin which was absent. Binding of macrophages isolated from lamina propria of the gut to synovial endothelium was almost entirely P-selectin-dependent. In contrast, small intestinal lymphocytes and immunoblasts both relied mainly on VAP-1 in recognition of synovial vessels. Thus, endothelial P-selectin and VAP-1 mediate binding of mucosal effector cells to synovium in a leukocyte subtype-selective manner. Antiadhesive therapy against these inducible molecules should ablate the pathogenetic cascade leading to inappropriate homing of leukocytes to joints in arthritis.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review focuses on the ligands for L-selectin that are found on vascular endothelium, leukocytes, carcinoma cells, and at various extravascular sites.
Abstract: Understanding the molecular basis of lymphocyte homing to lymphoid organs was originally a problem of concern only to immunologists. With the discovery of L-selectin and its ligands, interested scientists have expanded to include glycobiologists, immunopathologists, cancer biologists, and developmental biologists. Going beyond its first discovered role in homing to lymph nodes, the L-selectin system is implicated in such diverse processes as inflammatory leukocyte trafficking in both acute and chronic settings, hematogenous metastasis of carcinoma cells, effector mechanisms for inflammatory demyelination of axons, and implantation of the early mammalian embryo. This review focuses on the ligands for L-selectin that are found on vascular endothelium, leukocytes, carcinoma cells, and at various extravascular sites. The discovery of selectins and their ligands has validated the long-predicted hypothesis that carbohydrate-directed cell adhesion is relevant in eukaryotic systems. Emphasis will be given to the carbohydrate and sulfation modifications of the ligands, which enable recognition by L-selectin. The rapid "homing" of labeled cells into the lymph nodes presumably had its basis in the special affinity of small lymphocytes for the endothelium of the postcapillary venules.

739 citations

Journal Article
Robert I. Fox1
TL;DR: In support of this mechanism of action, in vitro mitogen stimulated human peripheral blood lymphocytes treated with A77 1726 undergo arrest at the G1 phase; this inhibition is reversed by uridine.
Abstract: Leflunomide, a novel drug with proven efficacy in rheumatoid arthritis, is an isoxazol derivative structurally unrelated to other immunomodulatory drugs. Leflunomide is rapidly metabolized to its active form, A77 1726. Two mechanisms of action have been identified for A77 1726: inhibition of dihydroorotate dehydrogenase (DHODH) and inhibition of tyrosine kinases. DHODH inhibition occurs at lower concentrations of A77 1726 than that of tyrosine kinases and is currently considered the major mode of action. Stimulated lymphocytes must increase ribonucleotide levels from 8 to 16-fold before proceeding from the G1 into the S phase. Increased levels of ribonucleotides can only be met by de novo ribonucleotide synthesis. At low levels of ribonucleotides, p53, a "sensor" molecule, gets activated and prevents progression through the cell cycle. Therefore, an inhibitor of de novo uridine monophosphate synthesis would predictably arrest stimulated cells at the G1 phase. In support of this mechanism of action, in vitro mitogen stimulated human peripheral blood lymphocytes treated with A77 1726 undergo arrest at the G1 phase; this inhibition is reversed by uridine.

319 citations

Journal ArticleDOI
TL;DR: It is proposed that VAP-1 is a novel type of adhesion molecule with dual function, with the appropriate glycosylation and in the correct inflammatory setting, its expression on the lumenal endothelial cell surface allows it to mediate lymphocyte adhesion and to function as an adhesion receptor involved in lymphocyte recirculation.
Abstract: Vascular adhesion protein 1 (VAP-1) is a human endothelial sialoglycoprotein whose cell surface expression is induced under inflammatory conditions. It has been shown previously to participate in lymphocyte recirculation by mediating the binding of lymphocytes to peripheral lymph node vascular endothelial cells in an L-selectin–independent fashion. We report here that the VAP-1 cDNA encodes a type II transmembrane protein of 84.6 kD with a single transmembrane domain located at the NH2-terminal end of the molecule and six potential N-glycosylation sites in the extracellular domain. In vivo, the protein exists predominantly as a homodimer of 170–180 kD. Ax endothelial cells transfected with a VAP-1 cDNA express VAP-1 on their cell surface and bind lymphocytes, and the binding can be partially inhibited with anti–VAP-1 mAbs. VAP-1 has no similarity to any currently known adhesion molecules, but has significant identity to the copper-containing amine oxidase family and has a monoamine oxidase activity. We propose that VAP-1 is a novel type of adhesion molecule with dual function. With the appropriate glycosylation and in the correct inflammatory setting, its expression on the lumenal endothelial cell surface allows it to mediate lymphocyte adhesion and to function as an adhesion receptor involved in lymphocyte recirculation. Its primary function in other locations where it is expressed, such as smooth muscle, may depend on its inherent monoamine oxidase activity.

317 citations

Journal ArticleDOI
TL;DR: It is proposed that the hepatic complications of IBD are mediated by long-lived mucosal T cells that are recruited to the liver in response to aberrantly expressed endothelial-cell adhesion molecules and chemokines that are normally restricted to the gut.
Abstract: Active inflammatory bowel disease (IBD) is often associated with simultaneous inflammation in the skin, eyes and joints. Inflammatory disease in the liver can also occur in patients with IBD but seems to be independent of inflammation in the bowel. In this Opinion article, we propose that the hepatic complications of IBD are mediated by long-lived mucosal T cells that are recruited to the liver in response to aberrantly expressed endothelial-cell adhesion molecules and chemokines that are normally restricted to the gut. Similar mechanisms might explain why certain diseases are associated with site-specific tissue distributions and might point to new therapeutic strategies that are based on modulating tissue-specific lymphocyte homing.

286 citations

Journal ArticleDOI
TL;DR: In this paper, leflunomide was shown to prevent the expansion of activated and autoimmune lymphocytes by interfering with the cell cycle progression due to inadequate production of rUMP and utilizing mechanisms involving p53.

275 citations

References
More filters
Journal ArticleDOI
05 Apr 1996-Science
TL;DR: A review of the molecular basis of lymphocyte homing is presented, and mechanisms by which homing physiology regulates the homeostasis of immunologic resources are proposed.
Abstract: The integration and control of systemic immune responses depends on the regulated trafficking of lymphocytes. This lymphocyte "homing" process disperses the immunologic repertoire, directs lymphocyte subsets to the specialized microenvironments that control their differentiation and regulate their survival, and targets immune effector cells to sites of antigenic or microbial invasion. Recent advances reveal that the exquisite specificity of lymphocyte homing is determined by combinatorial "decision processes" involving multistep sequential engagement of adhesion and signaling receptors. These homing-related interactions are seamlessly integrated into the overall interaction of the lymphocyte with its environment and participate directly in the control of lymphocyte function, life-span, and population dynamics. In this article a review of the molecular basis of lymphocyte homing is presented, and mechanisms by which homing physiology regulated the homeostasis of immunologic resources are proposed.

2,925 citations

Journal ArticleDOI
01 Oct 1994-Blood
TL;DR: Investigations have progressed from the early descriptions by intravital microscopy and histology, to functional and immunologic characterization of adhesion molecules, and now to the development of genetically deficient animals and the first phase I trial of "anti-adhesion" therapy in humans.

2,732 citations

Journal ArticleDOI
29 Jun 1990-Cell
TL;DR: In this paper, the authors have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture.

2,486 citations

Book
01 Jan 1979
TL;DR: The Fourteenth Edition of the Bible of Rheumatology offers new contributors and 5 new chapters, 11 restructured chapters, and significant updates to other chapters.
Abstract: Introduction to the study of rheumatic diseases scientific basis for the study of the rheumatic diseases clinical pharmacology of anti-rheumatic drugs rheumatoid arthritis other inflammatory arthritic syndromes systematic rheumatic diseases miscellaneous rheumatic diseases regional disorders of joints and related structures osteoarthritis metabolic bone and joint diseases infectious arthritis.

1,019 citations