scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Homoeolog expression bias and expression level dominance in allopolyploid cotton

01 Feb 2013-Heredity (Nature Publishing Group)-Vol. 110, Iss: 2, pp 171-180
TL;DR: Gene expression patterns in interspecific hybrid F1, and synthetic and natural allopolyploid cotton using RNA-Seq reads from leaf transcriptomes suggest that natural selection reconciles the regulatory mismatches caused by initial genomic merger, while new gene expression conditions are generated for evaluation by selection.
Abstract: Allopolyploidy is an evolutionary and mechanistically intriguing process, in that it entails the reconciliation of two or more sets of diverged genomes and regulatory interactions. In this study, we explored gene expression patterns in interspecific hybrid F(1), and synthetic and natural allopolyploid cotton using RNA-Seq reads from leaf transcriptomes. We determined how the extent and direction of expression level dominance (total level of expression for both homoeologs) and homoeolog expression bias (relative contribution of homoeologs to the transcriptome) changed from hybridization through evolution at the polyploid level and following cotton domestication. Genome-wide expression level dominance was biased toward the A-genome in the diploid hybrid and natural allopolyploids, whereas the direction was reversed in the synthetic allopolyploid. This biased expression level dominance was mainly caused by up- or downregulation of the homoeolog from the 'non-dominant' parent. Extensive alterations in homoeolog expression bias and expression level dominance accompany the initial merger of two diverged diploid genomes, suggesting a combination of regulatory (cis or trans) and epigenetic interactions that may arise and propagate through the transcriptome network. The extent of homoeolog expression bias and expression level dominance increases over time, from genome merger through evolution at the polyploid level. Higher rates of transgressive and novel gene expression patterns as well as homoeolog silencing were observed in natural allopolyploids than in F(1) hybrid and synthetic allopolyploid cottons. These observations suggest that natural selection reconciles the regulatory mismatches caused by initial genomic merger, while new gene expression conditions are generated for evaluation by selection.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town4, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley24, Jacqueline Batley11, Rod J. Snowdon7, Jörg Tost, David Edwards24, David Edwards11, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker8, Patrick Wincker1, Patrick Wincker25 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
Klaus F. X. Mayer, Jane Rogers, Jaroslav Doležel1, Curtis J. Pozniak2, Kellye Eversole, Catherine Feuillet3, Bikram S. Gill4, Bernd Friebe4, Adam J. Lukaszewski5, Pierre Sourdille6, Takashi R. Endo7, M. Kubaláková1, Jarmila Číhalíková1, Zdeňka Dubská1, Jan Vrána1, Romana Šperková1, Hana Šimková1, Melanie Febrer8, Leah Clissold, Kirsten McLay, Kuldeep Singh9, Parveen Chhuneja9, Nagendra K. Singh10, Jitendra P. Khurana11, Eduard Akhunov4, Frédéric Choulet6, Adriana Alberti, Valérie Barbe, Patrick Wincker, Hiroyuki Kanamori12, Fuminori Kobayashi12, Takeshi Itoh12, Takashi Matsumoto12, Hiroaki Sakai12, Tsuyoshi Tanaka12, Jianzhong Wu12, Yasunari Ogihara13, Hirokazu Handa12, P. Ron Maclachlan2, Andrew G. Sharpe14, Darrin Klassen14, David Edwards, Jacqueline Batley, Odd-Arne Olsen, Simen Rød Sandve15, Sigbjørn Lien15, Burkhard Steuernagel16, Brande B. H. Wulff16, Mario Caccamo, Sarah Ayling, Ricardo H. Ramirez-Gonzalez, Bernardo J. Clavijo, Jonathan M. Wright, Matthias Pfeifer, Manuel Spannagl, Mihaela Martis, Martin Mascher17, Jarrod Chapman18, Jesse Poland4, Uwe Scholz17, Kerrie Barry18, Robbie Waugh19, Daniel S. Rokhsar18, Gary J. Muehlbauer, Nils Stein17, Heidrun Gundlach, Matthias Zytnicki20, Véronique Jamilloux20, Hadi Quesneville20, Thomas Wicker21, Primetta Faccioli, Moreno Colaiacovo, Antonio Michele Stanca, Hikmet Budak22, Luigi Cattivelli, Natasha Glover6, Lise Pingault6, Etienne Paux6, Sapna Sharma, Rudi Appels23, Matthew I. Bellgard23, Brett Chapman23, Thomas Nussbaumer, Kai Christian Bader, Hélène Rimbert, Shichen Wang4, Ron Knox, Andrzej Kilian, Michael Alaux20, Françoise Alfama20, Loïc Couderc20, Nicolas Guilhot6, Claire Viseux20, Mikaël Loaec20, Beat Keller21, Sébastien Praud 
18 Jul 2014-Science
TL;DR: Insight into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.
Abstract: An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.

1,421 citations

Journal ArticleDOI
17 Aug 2018-Science
TL;DR: This study leverages 850 wheat RNA-sequencing samples, alongside the annotated genome, to determine the similarities and differences between homoeolog expression across a range of tissues, developmental stages, and cultivars and suggests that the transposable elements in promoters relate more closely to the variation in the relative expression of homoeologicals across tissues than to a ubiquitous effect across all tissues.
Abstract: The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.

609 citations


Cites background from "Homoeolog expression bias and expre..."

  • ...These results suggest that the polyploid context and the polyploidization process itself affect the relative expression of homoeologs comparedwith the baseline expression in the progenitor species (13), which has also been observed during the evolution of polyploid cotton (26) and monkeyflower (27)....

    [...]

Journal ArticleDOI
TL;DR: Perhaps the most important conclusion from recent and ongoing studies of polyploidy is that polyploids may propel a population into a new adaptive sphere given the myriad changes that accompany genome doubling.
Abstract: Polyploidy has long been considered a major force in plant evolution. G. Ledyard Stebbins, Jr., an architect of the Modern Synthesis, elegantly addressed a broad range of topics, from genes to chromosomes to deep phylogeny, but some of his most lasting insights came in the study of polyploidy. Here, we review the immense impact of his work on polyploidy over more than 60 years, from his entrance into this fledgling field in the 1920s until the end of his career. Stebbins and his contemporaries developed a model of polyploid evolution that persisted for nearly half a century. As new perspectives emerged in the 1980s and new genetic tools for addressing key aspects of polyploidy have become available, a new paradigm of polyploidy has replaced much of the Stebbinsian framework. We review that paradigm shift and emphasize those areas in which the ideas of Stebbins continue to propel the field forward, as well as those areas in which the field was held back; we also note new directions that plant geneticists and evolutionists are now exploring in polyploidy research. Perhaps the most important conclusion from recent and ongoing studies of polyploidy is that, following Levin and others, polyploidy may propel a population into a new adaptive sphere given the myriad changes that accompany genome doubling.

400 citations


Cites background from "Homoeolog expression bias and expre..."

  • ...Moreover, the underlying mechanisms responsible for biased gene expression require further investigation (see Yoo et al., 2013 ; M.-J. Yoo et al., Florida Museum of Natural History, unpublished manuscript)....

    [...]

  • ...Such expression-level dominance has also been reported in polyploids in Gossypium and Arabidopsis ( Wang et al., 2006b ; Chang et al., 2010 ; Flagel and Wendel, 2010 ; Yoo et al., 2013 ), among others ....

    [...]

Journal ArticleDOI
TL;DR: For advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate ‘flexible’ modes of inheritance.
Abstract: Despite the importance of polyploidy and the increasing availability of new genomic data, there remain important gaps in our knowledge of polyploid population genetics. These gaps arise from the complex nature of polyploid data (e.g. multiple alleles and loci, mixed inheritance patterns, association between ploidy and mating system variation). Furthermore, many of the standard tools for population genetics that have been developed for diploids are often not feasible for polyploids. This review aims to provide an overview of the state-of-the-art in polyploid population genetics and to identify the main areas where further development of molecular techniques and statistical theory is required. We review commonly used molecular tools (amplified fragment length polymorphism, microsatellites, Sanger sequencing, next-generation sequencing and derived technologies) and their challenges associated with their use in polyploid populations: that is, allele dosage determination, null alleles, difficulty of distinguishing orthologues from paralogues and copy number variation. In addition, we review the approaches that have been used for population genetic analysis in polyploids and their specific problems. These problems are in most cases directly associated with dosage uncertainty and the problem of inferring allele frequencies and assumptions regarding inheritance. This leads us to conclude that for advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate ‘flexible’ modes of inheritance. In addition, there is a need for more simulation-based studies that test what kinds of biases could result from both existing and novel approaches.

300 citations


Cites methods from "Homoeolog expression bias and expre..."

  • ...For example, following up on microarray-based experiments (Flagel et al. 2008; Flagel & Wendel 2010; Salmon et al. 2010), Yoo et al. (2013) used Illumina technology to sequence the transcriptomes of wild and cultivated cotton to distinguish between expression changes due to biases in which parental…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a different approach to problems of multiple significance testing is presented, which calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate, which is equivalent to the FWER when all hypotheses are true but is smaller otherwise.
Abstract: SUMMARY The common approach to the multiplicity problem calls for controlling the familywise error rate (FWER). This approach, though, has faults, and we point out a few. A different approach to problems of multiple significance testing is presented. It calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate. This error rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. Therefore, in problems where the control of the false discovery rate rather than that of the FWER is desired, there is potential for a gain in power. A simple sequential Bonferronitype procedure is proved to control the false discovery rate for independent test statistics, and a simulation study shows that the gain in power is substantial. The use of the new procedure and the appropriateness of the criterion are illustrated with examples.

83,420 citations


"Homoeolog expression bias and expre..." refers background or methods in this paper

  • ...The distribution of P-values was controlled for a false discovery rate by the BH method (Benjamini and Hochberg, 1995) at a¼ 0.05....

    [...]

  • ...E-mail: jfw@iastate.edu Received 30 May 2012; revised 3 September 2012; accepted 1 October 2012; published online 21 November 2012 Heredity (2013) 110, 171–180 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy expression level dominance have not been explored....

    [...]

Journal ArticleDOI
TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

45,957 citations


"Homoeolog expression bias and expre..." refers methods in this paper

  • ...Aligned sequences were filtered by MAPQ (MAPping Quality) equal to or larger than either 24 or 25 (depending on accession) using Samtools (Li et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations


"Homoeolog expression bias and expre..." refers background or methods in this paper

  • ...Here, we use the terms ‘homoeolog expression bias’ and ‘expression level dominance’ for expression patterns observed within individual homoeologous genes, and for overall expression of both homoeologs, respectively....

    [...]

  • ...After trimming the indexed sequences, fastq formatted reads from each library were mapped to the reference genome using Burrows Wheeler Alignment (Li and Durbin, 2009)....

    [...]

  • ...Specifically, the total expression level of a homoeolog pair in an allopolyploid may be similar to that exhibited by only one of the two diploid parents, irrespective of whether that parent displays upor downregulation with respect to the other parent....

    [...]

Journal ArticleDOI
TL;DR: EdgeR as mentioned in this paper is a Bioconductor software package for examining differential expression of replicated count data, which uses an overdispersed Poisson model to account for both biological and technical variability and empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference.
Abstract: Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).

29,413 citations


"Homoeolog expression bias and expre..." refers background or methods in this paper

  • ...E-mail: jfw@iastate.edu Received 30 May 2012; revised 3 September 2012; accepted 1 October 2012; published online 21 November 2012 Heredity (2013) 110, 171–180 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy expression level dominance have not been explored....

    [...]

  • ...…were normalized by the TMM (trimmed mean of M values) method, and then using overall expression level of both homoeologs for a gene, differential expression was assessed in the F1 hybrid and allopolyploids relative to their diploid parents using Fisher’s exact tests (Robinson et al., 2010)....

    [...]

Journal ArticleDOI
TL;DR: From the kinetic data, it becomes evident that the reductive amination reaction is highly adaptive to the ammonium environment.

14,480 citations


"Homoeolog expression bias and expre..." refers methods in this paper

  • ...RNA was extracted using a CTAB extraction protocol (Doyle and Doyle, 1987), and then purified with the RNeasy Plant Mini Kit (Qiagen, Stanford, CA, USA)....

    [...]