scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hot exciton dissociation in polymer solar cells

TL;DR: This work directly targets the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system and rationalizes these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs.
Abstract: The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.
Citations
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Abstract: Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.

5,882 citations


Cites background or methods from "Hot exciton dissociation in polymer..."

  • ...For 600 nm photo-excitation, it is reasonable to attribute the 760 nm PB2 band to state filling effects (which include the hole population of VB1, the electron population of CB1 and the inter-band stimulated emission) (10, 17, 28-33)....

    [...]

  • ...4 ps hot hole cooling is much slower than that in most organic semiconductors (~100 fs) (30, 35)....

    [...]

  • ...To improve the accuracy of these estimated values from the direct PL approach and obtain more details on the photo-excited charge carrier dynamics, complementary transient absorption spectroscopy (TAS) measurements were also performed (10, 17, 28-33)....

    [...]

Journal ArticleDOI
TL;DR: Non-fullerene OSCs show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities, and this Review highlights these opportunities made possible by NF acceptors.
Abstract: Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

2,117 citations

Journal ArticleDOI
TL;DR: It is shown that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers, which can enable novel two- dimensional devices for optoelectronics and light harvesting.
Abstract: The charge transfer between two layers of different two-dimensional materials occurs at a much faster speed than expected, holding promise for efficient optoelectronic devices. Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena1,2,3,4,5,6,7,8,9,10. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because two-dimensional MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light–matter interactions2,3,11. Theory predicts that many stacked MX2 heterostructures form type II semiconductor heterojunctions that facilitate efficient electron–hole separation for light detection and harvesting12,13,14,15,16. Here, we report the first experimental observation of ultrafast charge transfer in photoexcited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond pump–probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel two-dimensional devices for optoelectronics and light harvesting.

1,804 citations

Journal ArticleDOI
TL;DR: This review suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto -electronic switch and memory.
Abstract: While organic electronics is mostly dominated by light-emitting diodes, photovoltaic cells and transistors, optoelectronics properties peculiar to organic semiconductors make them interesting candidates for the development of innovative and disruptive applications also in the field of light signal detection. In fact, organic-based photoactive media combine effective light absorption in the region of the spectrum from ultraviolet to near-infrared with good photogeneration yield and low-temperature processability over large areas and on virtually every substrate, which might enable innovative optoelectronic systems to be targeted for instance in the field of imaging, optical communications or biomedical sensing. In this review, after a brief resume of photogeneration basics and of devices operation mechanisms, we offer a broad overview of recent progress in the field, focusing on photodiodes and phototransistors. As to the former device category, very interesting values for figures of merit such as photoconversion efficiency, speed and minimum detectable signal level have been attained, and even though the simultaneous optimization of all these relevant parameters is demonstrated in a limited number of papers, real applications are within reach for this technology, as it is testified by the increasing number of realizations going beyond the single-device level and tackling more complex optoelectronic systems. As to phototransistors, a more recent subject of study in the framework of organic electronics, despite a broad distribution in the reported performances, best photoresponsivities outperform amorphous silicon-based devices. This suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto-electronic switch and memory.

1,081 citations

Journal ArticleDOI
TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Abstract: Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjug...

995 citations

References
More filters
Journal ArticleDOI
TL;DR: By incorporating a few volume per cent of alkanedithiols in the solution used to spin-cast films comprising a low-bandgap polymer and a fullerene derivative, the power-conversion efficiency of photovoltaic cells is increased from 2.8% to 5.5% through altering the bulk heterojunction morphology.
Abstract: High charge-separation efficiency combined with the reduced fabrication costs associated with solution processing and the potential for implementation on flexible substrates make 'plastic' solar cells a compelling option for tomorrow's photovoltaics. Attempts to control the donor/acceptor morphology in bulk heterojunction materials as required for achieving high power-conversion efficiency have, however, met with limited success. By incorporating a few volume per cent of alkanedithiols in the solution used to spin-cast films comprising a low-bandgap polymer and a fullerene derivative, the power-conversion efficiency of photovoltaic cells (air-mass 1.5 global conditions) is increased from 2.8% to 5.5% through altering the bulk heterojunction morphology. This discovery can potentially enable morphological control in bulk heterojunction materials where thermal annealing is either undesirable or ineffective.

3,178 citations

Journal ArticleDOI
TL;DR: The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density, which dictates the electronic characteristics of the polymer.
Abstract: In recent years, organic solar cells utilizing π-conjugated polymers have attracted widespread interest in both the academic and, increasingly, the commercial communities. These polymers are promising in terms of their electronic properties, low cost, versatility of functionalization, thin film flexibility, and ease of processing. These factors indicate that organic solar cells, although currently producing relatively low power conversion efficiencies (∼5-7%),1–3 compared to inorganic solar cells, have the potential to compete effectively with alternative solar cell technologies. However, in order for this to be feasible, the efficiencies of organic solar cells need further improvement. This is the focus of extensive studies worldwide. The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density. It is the interaction of these π electrons that dictates the electronic characteristics of the polymer. The energy levels become closely spaced as the delocalization length increases, resulting in a ‘band’ structure somewhat similar to that observed in inorganic solid-state semiconductors. In contrast to the latter, however, the primary photoexcitations in conjugated polymers are bound electron-hole pairs (excitons) rather than free charge carriers; this is largely due to their low dielectric constant and the presence of significant electron-lattice interactions and electron correlation effects.4 In the absence of a mechanism to dissociate the excitons into free charge carriers, the exciton will undergo radiative and nonradiative decay, with a typical exciton lifetime in the range from 100 ps to 1 ns. Achieving efficient charge photogeneration has long been recognized as a vital challenge for molecular-based solar cells. For example, the first organic solar cells were simple single-layer devices based on the pristine polymer and two electrodes of different work function. These devices, based on a Schottky diode structure, resulted in poor photocurrent efficiency.5–7 Relatively efficient photocurrent generation in an organic device was first reported by Tang in 1986,8 employing a vacuum-deposited CuPc/ perylene derivative donor/acceptor bilayer device. The differing electron affinities (and/or ionization potentials) between these two materials created an energy offset at their interface, thereby driving exciton dissociation. However, the efficiency of such bilayer devices is limited by the requirement of exciton diffusion to the donor/acceptor interface, typically requiring film thicknesses less than the optical absorption depth. Organic materials usually exhibit exciton diffusion lengths of ∼10 nm and optical absorption depths of 100 nm, although we note significant progress is now being made with organic materials with exciton diffusion lengths comparable to or exceeding their optical absorption depth.9–12 The observation of ultrafast photoinduced electron transfer13,14 from a conjugated polymer to C60 and the * To whom correspondence should be addressed. E-mail: j.durrant@ imperial.ac.uk. Chem. Rev. 2010, 110, 6736–6767 6736

2,061 citations

Journal ArticleDOI
TL;DR: An overview of the optical and electronic processes that take place in a solid-state organic solar cell, which is defined as a cell in which the semiconducting materials between the electrodes are organic.
Abstract: Our objective in this Account is 3-fold. First, we provide an overview of the optical and electronic processes that take place in a solid-state organic solar cell, which we define as a cell in which the semiconducting materials between the electrodes are organic, be them polymers, oligomers, or small molecules; this discussion is also meant to set the conceptual framework in which many of the contributions to this Special Issue on Photovoltaics can be viewed. We successively turn our attention to (i) optical absorption and exciton formation, (ii) exciton migration to the donor−acceptor interface, (iii) exciton dissociation into charge carriers, resulting in the appearance of holes in the donor and electrons in the acceptor, (iv) charge-carrier mobility, and (v) charge collection at the electrodes. For each of these processes, we also describe the theoretical challenges that need to be overcome to gain a comprehensive understanding at the molecular level. Finally, we highlight recent theoretical advances, ...

1,283 citations

Journal ArticleDOI
16 Mar 2012-Science
TL;DR: In this paper, the electron-hole pair created via photon absorption in organic photoconversion systems must overcome the Coulomb attraction to achieve long-range charge separation, and this process is facilitated through the formation of excited, delocalized band states.
Abstract: The electron-hole pair created via photon absorption in organic photoconversion systems must overcome the Coulomb attraction to achieve long-range charge separation. We show that this process is facilitated through the formation of excited, delocalized band states. In our experiments on organic photovoltaic cells, these states were accessed for a short time (

1,023 citations

Journal ArticleDOI
TL;DR: In this article, the formation of a relatively pure, molecularly ordered phase of the fullerene component, phenyl-C61-butyric acid methyl ester (PCBM), may be the key factor driving the spatial separation of photogenerated electrons and holes in many organic solar cells.
Abstract: Solution processed polymer/fullerene blend films are receiving extensive attention as the photoactive layer of organic solar cells. In this paper we report a range of photophysical, electrochemical, physicochemical and structural data which provide evidence that formation of a relatively pure, molecularly ordered phase of the fullerene component, phenyl-C61-butyric acid methyl ester (PCBM), may be the key factor driving the spatial separation of photogenerated electrons and holes in many of these devices. PCBM crystallisation is shown to result in an increase in its electron affinity, providing an energetic driving force for spatial separation of electrons and holes. Based upon our observations, we propose a functional model applicable to many organic bulk heterojunction devices based upon charge generation in a finely intermixed polymer/fullerene phase followed by spatial separation of electrons and holes at the interface of this mixed phase with crystalline PCBM domains. This model has significant implications for the design of alternative acceptor materials to PCBM for organic solar cells.

421 citations