# How Generic Scale Invariance Influences Quantum and Classical Phase Transitions

...read more

Content maybe subject to copyright Report

##### Citations

More filters

••

[...]

TL;DR: In this paper, it has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and a charged scalar.

Abstract: It has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and charged scalar We review our earlier analysis of this theory and extend it in two directions First, we consider all values for the charge of the scalar field Away from the large charge limit, backreaction on the spacetime metric is important While the qualitative behaviour of the dual superconductor is found to be similar for all charges, in the limit of arbitrarily small charge a new type of black hole instability is found We go on to add a perpendicular magnetic field B and obtain the London equation and magnetic penetration depth We show that these holographic superconductors are Type II, ie, starting in a normal phase at large B and low temperatures, they develop superconducting droplets as B is reduced

938 citations

••

[...]

TL;DR: In this paper, the authors summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticalities and the interplay between quantum criticalness and unconventional superconductivity.

Abstract: Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, that use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticality and the interplay between quantum criticality and unconventional superconductivity. At a zero-temperature phase transition from one ordered state to another, fluctuations between the two states lead to quantum critical behaviour that can lead to unexpected physics. Metals with ‘heavy’ electrons often harbour such weird states.

925 citations

••

[...]

TL;DR: In this article, the authors review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with $d$- and $f$-electrons as well as magnetic semiconductors.

Abstract: We review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with $d$- and $f$-electrons as well as magnetic semiconductors. Optical inquiry into correlations in all these diverse systems is enabled by experimental access to the fundamental characteristics of an ensemble of electrons including their self-energy and kinetic energy. Steady-state spectroscopy carried out over a broad range of frequencies from microwaves to UV light and fast optics time-resolved techniques provide complimentary prospectives on correlations. Because the theoretical understanding of strong correlations is still evolving, the review is focused on the analysis of the universal trends that are emerging out of a large body of experimental data augmented where possible with insights from numerical studies.

571 citations

••

[...]

TL;DR: The experimental status of the study of the superconducting phases of $f$-electron compounds is reviewed in this paper, where superconductivity has been found at the border of magnetic order as well as deep within ferromagnetic and antiferromagnetically ordered states.

Abstract: Intermetallic compounds containing $f$-electron elements display a wealth of superconducting phases, which are prime candidates for unconventional pairing with complex order parameter symmetries. For instance, superconductivity has been found at the border of magnetic order as well as deep within ferromagnetically and antiferromagnetically ordered states, suggesting that magnetism may promote rather than destroy superconductivity. Superconducting phases near valence transitions or in the vicinity of magnetopolar order are candidates for new superconductive pairing interactions such as fluctuations of the conduction electron density or the crystal electric field, respectively. The experimental status of the study of the superconducting phases of $f$-electron compounds is reviewed.

465 citations

••

[...]

Max Planck Society

^{1}, Heidelberg University^{2}, RWTH Aachen University^{3}, University of Göttingen^{4}TL;DR: The functional renormalization group as discussed by the authors is a flexible and unbiased tool for dealing with scale-dependent behavior of correlated fermion systems, such as Luttinger liquid behavior and the Kondo effect.

Abstract: Numerous correlated electron systems exhibit a strongly scale-dependent behavior. Upon lowering the energy scale, collective phenomena, bound states, and new effective degrees of freedom emerge. Typical examples include (i) competing magnetic, charge, and pairing instabilities in two-dimensional electron systems; (ii) the interplay of electronic excitations and order parameter fluctuations near thermal and quantum phase transitions in metals; and (iii) correlation effects such as Luttinger liquid behavior and the Kondo effect showing up in linear and nonequilibrium transport through quantum wires and quantum dots. The functional renormalization group is a flexible and unbiased tool for dealing with such scale-dependent behavior. Its starting point is an exact functional flow equation, which yields the gradual evolution from a microscopic model action to the final effective action as a function of a continuously decreasing energy scale. Expanding in powers of the fields one obtains an exact hierarchy of flow equations for vertex functions. Truncations of this hierarchy have led to powerful new approximation schemes. This review is a comprehensive introduction to the functional renormalization group method for interacting Fermi systems. A self-contained derivation of the exact flow equations is presented and frequently used truncation schemes are described. Reviewing selected applications it is shown how approximations based on the functional renormalization group can be fruitfully used to improve our understanding of correlated fermion systems.

427 citations

##### References

More filters

•

[...]

01 Jan 1972

TL;DR: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results as discussed by the authors, and the major aim of this serial is to provide review articles that can serve as standard references for research workers in the field.

Abstract: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies. Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.

12,035 citations

•

[...]

01 Feb 1974

TL;DR: In this paper, the authors define an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures and describe the properties of these mixtures.

Abstract: Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-, quasi-long and short-range order remarkable features of liquid crystals. Part 2 Long- and short-range order in nematics: definition of an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures. Part 3 Static distortion in a nematic single crystal: principles of the continuum theory magnetic field effects electric field effects in an insulating nematic fluctuations in the alignment hydrostatics of nematics. Part 4 Defects and textures in nematics: observations disclination lines point disclinations walls under magnetic fields umbilics surface disclinations. Part 5 Dynamical properties of nematics: the equations of "nematodynamics" experiments measuring the Leslie co-efficients convective instabilities under electric fields molecular motions. Part 6 Cholesterics: optical properties of an ideal helix agents influencing the pitch dynamical properties textures and defects in cholesterics. Part 7 Smectics: symmetry of the main smectic phases continuum description of smectics A and C remarks on phase and precritical phenomena.

9,603 citations

••

[...]

TL;DR: In this paper, a general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of timefluctuation of dynamical variables associated with such irreversible processes.

Abstract: A general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of time-fluctuation of dynamical variables associated with such irreversible processes. This is a generalization of statistical mechanics which affords exact formulation as the basis of calculation of such irreversible quantities from atomistic theory. The general formalism of this statistical-mechanical theory is examined in detail. The response, relaxation, and correlation functions are defined in quantummechanical way and their relations are investigated. The formalism is illustrated by simple examples of magnetic and conduction problems. Certain sum rules are discussed for these examples. Finally it is pointed out that this theory may be looked as a generalization of the Einstein relation.

6,597 citations

••

[...]

TL;DR: In this paper, it is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic.

Abstract: It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-$S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

5,449 citations

••

[...]

TL;DR: Weinberg as discussed by the authors presented a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics, including supersymmetric algebras.

Abstract: In this third volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly exposition of quantum field theory. This volume presents a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics. The text introduces and explains a broad range of topics, including supersymmetric algebras, supersymmetric field theories, extended supersymmetry, supergraphs, non-perturbative results, theories of supersymmetry in higher dimensions, and supergravity. A thorough review is given of the phenomenological implications of supersymmetry, including theories of both gauge and gravitationally-mediated supersymmetry breaking. Also provided is an introduction to mathematical techniques, based on holomorphy and duality, that have proved so fruitful in recent developments. This book contains much material not found in other books on supersymmetry, including previously unpublished results. Exercises are included.

4,932 citations