scispace - formally typeset
Search or ask a question
Journal ArticleDOI

How Generic Scale Invariance Influences Quantum and Classical Phase Transitions

TL;DR: In this article, the authors discuss a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of order parameter only.
Abstract: This review discusses a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of the order parameter only. The soft modes in question are manifestations of generic scale invariance, i.e., the appearance of long-range order in whole regions in the phase diagram. The concept of generic scale invariance and its influence on critical behavior is explained using various examples, both classical and quantum mechanical. The peculiarities of quantum phase transitions are discussed, with emphasis on the fact that they are more susceptible to the effects of generic scale invariance than their classical counterparts. Explicit examples include the quantum ferromagnetic transition in metals, with or without quenched disorder; the metal-superconductor transition at zero temperature; and the quantum antiferromagnetic transition. Analogies with classical phase transitions in liquid crystals and classical fluids are pointed out, and a unifying conceptual framework is developed for all transitions that are influenced by generic scale invariance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors assess the dependence on substrate dimensionality of the asymptotic scaling behavior of a whole family of equations that feature the basic symmetries of the Kardar-Parisi-Zhang (KPZ) equation.
Abstract: We assess the dependence on substrate dimensionality of the asymptotic scaling behavior of a whole family of equations that feature the basic symmetries of the Kardar-Parisi-Zhang (KPZ) equation. Even for cases in which, as expected from universality arguments, these models display KPZ values for the critical exponents and limit distributions, their behavior deviates from KPZ scaling for increasing system dimensions. Such a fragility of KPZ universality contradicts naive expectations, and questions straightforward application of universality principles for the continuum description of experimental systems.

7 citations

Journal ArticleDOI
TL;DR: In this article, the magnetic analogues of superconductivity are considered as candidate states for the hidden order that sometimes develops in the vicinity of quantum critical points in metallic systems, which can be thought of as "pairing" in the particle-hole channel.
Abstract: This conference summary and outlook provides a personal overview of the topics and themes of the August 2009 Dresden meeting on quantum criticality and novel phases. The dichotomy between the local moment and the itinerant views of magnetism is revisited and refreshed in new materials, new probes and new theoretical ideas. New universality and apparent zero temperature phases of matter move us beyond the old ideas of quantum criticality. This is accompanied by alternative pairing interactions and as yet unidentified phases developing in the vicinity of quantum critical points. In discussing novel order, the magnetic analogues of superconductivity are considered as candidate states for the hidden order that sometimes develops in the vicinity of quantum critical points in metallic systems. These analogues can be thought of as "pairing" in the particle-hole channel and are tabulated. This analogy is used to outline a framework to study the relation between ferromagnetic fluctuations and the propensity of a metal to nematic type phases which at weak coupling correspond to Pomeranchuk instabilities. This question can be related to the fundamental relations of Fermi liquid theory.

7 citations

Journal ArticleDOI
TL;DR: An experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using 9Be+ ions in a Penning trap is presented and the ability to realize both planar and three-dimensional ion arrays via control of rotating wall electrodes and radial laser beams is demonstrated.
Abstract: We present the design, construction and characterization of an experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using Be-9 ions in a Penning trap. This article provides a detailed overview of the core optical and trapping subsystems, and their integration. We begin with a description of a dual-trap design separating loading and experimental zones and associated vacuum infrastructure design. The experimental-zone trap electrodes are designed for wide-angle optical access (e.g. for lasers used to engineer spin-motional coupling across large ion crystals) while simultaneously providing a harmonic trapping potential. We describe a near-zero-loss liquid-cryogen-based superconducting magnet, employed in both trapping and establishing a quantization field for ion spin-states, and equipped with a dual-stage remote-motor LN2LHe recondenser. Experimental measurements using a nuclear magnetic resonance (NMR) probe demonstrate part-per-million homogeneity over 7 mm-diameter cylindrical volume, with no discernible effect on the measured NMR linewidth from pulse-tube operation. Next we describe a custom-engineered inbore optomechanical system which delivers ultraviolet (UV) laser light to the trap, and supports multiple aligned optical objectives for top- and sideview imaging in the experimental trap region. We describe design choices including the use of non-magnetic goniometers and translation stages for precision alignment. Further, the optomechanical system integrates UV-compatible fiber optics which decouple the system's alignment from remote light sources. Using this system we present site-resolved images of ion crystals and demonstrate the ability to realize both planar and three-dimensional ion arrays via control of rotating wall electrodes and radial laser beams. Looking to future work, we include interferometric..

7 citations

Journal ArticleDOI
TL;DR: Taniguchi, Itoh and Yagi as discussed by the authors argued that the weak first order transition in doped SrTiO3 is a consequence of the coupling between strain and order parameter fluctuations, and they used renormalization group equations for vertices to write the free energy of such a system.
Abstract: Here a recently observed weak first order transition in doped SrTiO3 [Taniguchi, Itoh and Yagi, Phys. Rev. Lett.99, 017602 (2007)] is argued to be a consequence of the coupling between strain and order parameter fluctuations. Starting with a semi-microscopic action, and using renormalization group equations for vertices, we write the free energy of such a system. This fluctuation renormalized free energy is then used to discuss the possibility of first order transition at zero temperature as well as at finite temperature. An asymptotic analysis predicts small but a finite discontinuity in the order parameter near a mean field quantum critical point at zero temperature. In case of finite temperature transition, near quantum critical point such a possibility is found to be extremely weak. Results are in accord with some experimental findings on quantum paraelectrics such as SrTiO3 and KTaO3.

6 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the phase transition between the uniform superfluid and normal phases in spin-and mass-imbalanced Fermi mixtures is performed, where the gradient term in the effective action can be tuned to zero for experimentally relevant sets of parameters, thus providing an avenue to realize a quantum Lifshitz point.
Abstract: We perform a detailed analysis of the phase transition between the uniform superfluid and normal phases in spin- and mass-imbalanced Fermi mixtures. At mean-field level we demonstrate that at temperature $T\to 0$ the gradient term in the effective action can be tuned to zero for experimentally relevant sets of parameters, thus providing an avenue to realize a quantum Lifshitz point. We subsequently analyze damping processes affecting the order-parameter field across the phase transition. We show that, in the low energy limit, Landau damping occurs only in the symmetry-broken phase and affects exclusively the longitudinal component of the order-parameter field. It is however unavoidably present in the immediate vicinity of the phase transition at temperature $T=0$. We subsequently perform a renormalization-group analysis of the system in a situation, where, at mean-field level, the quantum phase transition is second order (and not multicritical). We find that, at $T$ sufficiently low, including the Landau damping term in a form derived from the microscopic action destabilizes the renormalization group flow towards the Wilson-Fisher fixed point. This signals a possible tendency to drive the transition weakly first-order by the coupling between the order-parameter fluctuations and fermionic excitations effectively captured by the Landau damping contribution to the order-parameter action.

6 citations

References
More filters
Book
01 Jan 1972
TL;DR: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results as discussed by the authors, and the major aim of this serial is to provide review articles that can serve as standard references for research workers in the field.
Abstract: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies. Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.

12,039 citations

Book
01 Feb 1974
TL;DR: In this paper, the authors define an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures and describe the properties of these mixtures.
Abstract: Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-, quasi-long and short-range order remarkable features of liquid crystals. Part 2 Long- and short-range order in nematics: definition of an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures. Part 3 Static distortion in a nematic single crystal: principles of the continuum theory magnetic field effects electric field effects in an insulating nematic fluctuations in the alignment hydrostatics of nematics. Part 4 Defects and textures in nematics: observations disclination lines point disclinations walls under magnetic fields umbilics surface disclinations. Part 5 Dynamical properties of nematics: the equations of "nematodynamics" experiments measuring the Leslie co-efficients convective instabilities under electric fields molecular motions. Part 6 Cholesterics: optical properties of an ideal helix agents influencing the pitch dynamical properties textures and defects in cholesterics. Part 7 Smectics: symmetry of the main smectic phases continuum description of smectics A and C remarks on phase and precritical phenomena.

9,683 citations

Journal ArticleDOI
Ryogo Kubo1
TL;DR: In this paper, a general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of timefluctuation of dynamical variables associated with such irreversible processes.
Abstract: A general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of time-fluctuation of dynamical variables associated with such irreversible processes. This is a generalization of statistical mechanics which affords exact formulation as the basis of calculation of such irreversible quantities from atomistic theory. The general formalism of this statistical-mechanical theory is examined in detail. The response, relaxation, and correlation functions are defined in quantummechanical way and their relations are investigated. The formalism is illustrated by simple examples of magnetic and conduction problems. Certain sum rules are discussed for these examples. Finally it is pointed out that this theory may be looked as a generalization of the Einstein relation.

7,090 citations

Journal ArticleDOI
TL;DR: In this paper, it is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic.
Abstract: It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-$S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

6,236 citations

MonographDOI
30 Jun 1995
TL;DR: Weinberg as discussed by the authors presented a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics, including supersymmetric algebras.
Abstract: In this third volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly exposition of quantum field theory. This volume presents a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics. The text introduces and explains a broad range of topics, including supersymmetric algebras, supersymmetric field theories, extended supersymmetry, supergraphs, non-perturbative results, theories of supersymmetry in higher dimensions, and supergravity. A thorough review is given of the phenomenological implications of supersymmetry, including theories of both gauge and gravitationally-mediated supersymmetry breaking. Also provided is an introduction to mathematical techniques, based on holomorphy and duality, that have proved so fruitful in recent developments. This book contains much material not found in other books on supersymmetry, including previously unpublished results. Exercises are included.

4,988 citations