scispace - formally typeset
Search or ask a question
Journal ArticleDOI

How Generic Scale Invariance Influences Quantum and Classical Phase Transitions

TL;DR: In this article, the authors discuss a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of order parameter only.
Abstract: This review discusses a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of the order parameter only. The soft modes in question are manifestations of generic scale invariance, i.e., the appearance of long-range order in whole regions in the phase diagram. The concept of generic scale invariance and its influence on critical behavior is explained using various examples, both classical and quantum mechanical. The peculiarities of quantum phase transitions are discussed, with emphasis on the fact that they are more susceptible to the effects of generic scale invariance than their classical counterparts. Explicit examples include the quantum ferromagnetic transition in metals, with or without quenched disorder; the metal-superconductor transition at zero temperature; and the quantum antiferromagnetic transition. Analogies with classical phase transitions in liquid crystals and classical fluids are pointed out, and a unifying conceptual framework is developed for all transitions that are influenced by generic scale invariance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the scaling theory of disordered electrons with electron-electron interactions and show how to adjust the microscopic Fermi-liquid theory to the presence of disorder.
Abstract: The metal–insulator transition (MIT) observed in a two-dimensional dilute electron liquid raises the question about the applicability of the scaling theory of disordered electrons, the approach pioneered by Phil Anderson and his collaborators,8 for the description of this transition. In this context, we review here the scaling theory of disordered electrons with electron–electron interactions. We start with the disordered Fermi liquid, and show how to adjust the microscopic Fermi-liquid theory to the presence of disorder. Then we describe the non-linear sigma model (NLSM) with interactions. This model has a direct relation with the disordered Fermi liquid, but can be more generally applicable, since it is a minimal model for disordered interacting electrons. The discussion is mostly about the general structure of the theory emphasizing the connection of the scaling parameters entering the NLSM with conservation laws. Next, we show that the MIT, as described by the NLSM with interactions, is a quantum phas...

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry, and derived the second order phase transition line.
Abstract: We extend the Hertz--Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. By using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line ${T}_{c}(\ensuremath{\delta})$, where $\ensuremath{\delta}$ is a nonthermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature ${T}_{G}$ to the transition temperature ${T}_{c}$, the latter being associated with a non-Gaussian fixed point.

27 citations

Journal ArticleDOI
TL;DR: The solution of this model in (2+1)D reveals that the critical fluctuations are determined by topological excitations, vortices and a variety of instantons, and not by renormalized spin-wave theories of the Landau-Ginzburg-Wilson type, adapted by Moriya, Hertz and others for quantum-criticality.
Abstract: The anomalous transport and thermodynamic properties in the quantum-critical region, in the cuprates, and in the quasi-two dimensional Fe-based superconductors and heavy-fermion compounds, have the same temperature dependences. This can occur only if, despite their vast microscopic differences, a common statistical mechanical model describes their phase transitions. The antiferromagnetic (AFM)-ic models for the latter two, just as the loop-current model for the cuprates, map to the dissipative XY model. The solution of this model in (2+1)D reveals that the critical fluctuations are determined by topological excitations, vortices and a variety of instantons, and not by renormalized spin-wave theories of the Landau-Ginzburg-Wilson type, adapted by Moriya, Hertz and others for quantum-criticality. The absorptive part of the fluctuations is a separable function of momentum [Formula: see text], measured from the ordering vector, and of the frequency ω and the temperature T which scale as [Formula: see text] at criticality. Direct measurements of the fluctuations by neutron scattering in the quasi-two-dimensional heavy fermion and Fe-based compounds, near their antiferromagnetic quantum critical point, are consistent with this form. Such fluctuations, together with the vertex coupling them to fermions, lead to a marginal fermi-liquid, with the imaginary part of the self-energy [Formula: see text] for all momenta, a resistivity [Formula: see text], a [Formula: see text] contribution to the specific heat, and other singular fermi-liquid properties common to these diverse compounds, as well as to d-wave superconductivity. This is explicitly verified, in the cuprates, by analysis of the pairing and the normal self-energy directly extracted from the recent high resolution angle resolved photoemission measurements. This reveals, in agreement with the theory, that the frequency dependence of the attractive irreducible particle-particle vertex in the d-wave channel is the same as the irreducible particle-hole vertex in the full symmetry of the lattice.

27 citations

Journal ArticleDOI
TL;DR: A comprehensive review of Hall effect measurements in the heavy fermion materials can be found in this article, with particular emphasis on its utility in the investigation of quantum critical phenomena which are thought to drive many of the exotic electronic ground states in these systems.
Abstract: The heavy fermion systems present a unique platform in which strong electronic correlations give rise to a host of novel, and often competing, electronic and magnetic ground states. Amongst a number of potential experimental tools at our disposal, measurements of the Hall effect have emerged as a particularly important one in discerning the nature and evolution of the Fermi surfaces of these enigmatic metals. In this article, we present a comprehensive review of Hall effect measurements in the heavy fermion materials, and examine the success it has had in contributing to our current understanding of strongly correlated matter. Particular emphasis is placed on its utility in the investigation of quantum critical phenomena which are thought to drive many of the exotic electronic ground states in these systems. This is achieved by the description of measurements of the Hall effect across the putative zero-temperature instability in the archetypal heavy fermion metal YbRh2Si2. Using the CeMIn5 (with M=Co, Ir)...

27 citations

Journal ArticleDOI
TL;DR: High precision measurements of the magnetic susceptibility, specific heat, and electrical resistivity in the layered compound YFe2Al10 demonstrate robust field-temperature scaling, evidence that this system is naturally poised without tuning on the verge of ferromagnetic order that occurs exactly at T = 0.
Abstract: The absence of thermal fluctuations at T = 0 makes it possible to observe the inherently quantum mechanical nature of systems where the competition among correlations leads to different types of collective ground states. Our high precision measurements of the magnetic susceptibility, specific heat, and electrical resistivity in the layered compound YFe2Al10 demonstrate robust field-temperature scaling, evidence that this system is naturally poised without tuning on the verge of ferromagnetic order that occurs exactly at T = 0, where magnetic fields drive the system away from this quantum critical point and restore normal metallic behavior.

26 citations

References
More filters
Book
01 Jan 1972
TL;DR: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results as discussed by the authors, and the major aim of this serial is to provide review articles that can serve as standard references for research workers in the field.
Abstract: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies. Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.

12,039 citations

Book
01 Feb 1974
TL;DR: In this paper, the authors define an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures and describe the properties of these mixtures.
Abstract: Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-, quasi-long and short-range order remarkable features of liquid crystals. Part 2 Long- and short-range order in nematics: definition of an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures. Part 3 Static distortion in a nematic single crystal: principles of the continuum theory magnetic field effects electric field effects in an insulating nematic fluctuations in the alignment hydrostatics of nematics. Part 4 Defects and textures in nematics: observations disclination lines point disclinations walls under magnetic fields umbilics surface disclinations. Part 5 Dynamical properties of nematics: the equations of "nematodynamics" experiments measuring the Leslie co-efficients convective instabilities under electric fields molecular motions. Part 6 Cholesterics: optical properties of an ideal helix agents influencing the pitch dynamical properties textures and defects in cholesterics. Part 7 Smectics: symmetry of the main smectic phases continuum description of smectics A and C remarks on phase and precritical phenomena.

9,683 citations

Journal ArticleDOI
Ryogo Kubo1
TL;DR: In this paper, a general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of timefluctuation of dynamical variables associated with such irreversible processes.
Abstract: A general type of fluctuation-dissipation theorem is discussed to show that the physical quantities such as complex susceptibility of magnetic or electric polarization and complex conductivity for electric conduction are rigorously expressed in terms of time-fluctuation of dynamical variables associated with such irreversible processes. This is a generalization of statistical mechanics which affords exact formulation as the basis of calculation of such irreversible quantities from atomistic theory. The general formalism of this statistical-mechanical theory is examined in detail. The response, relaxation, and correlation functions are defined in quantummechanical way and their relations are investigated. The formalism is illustrated by simple examples of magnetic and conduction problems. Certain sum rules are discussed for these examples. Finally it is pointed out that this theory may be looked as a generalization of the Einstein relation.

7,090 citations

Journal ArticleDOI
TL;DR: In this paper, it is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic.
Abstract: It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-$S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

6,236 citations

MonographDOI
30 Jun 1995
TL;DR: Weinberg as discussed by the authors presented a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics, including supersymmetric algebras.
Abstract: In this third volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly exposition of quantum field theory. This volume presents a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics. The text introduces and explains a broad range of topics, including supersymmetric algebras, supersymmetric field theories, extended supersymmetry, supergraphs, non-perturbative results, theories of supersymmetry in higher dimensions, and supergravity. A thorough review is given of the phenomenological implications of supersymmetry, including theories of both gauge and gravitationally-mediated supersymmetry breaking. Also provided is an introduction to mathematical techniques, based on holomorphy and duality, that have proved so fruitful in recent developments. This book contains much material not found in other books on supersymmetry, including previously unpublished results. Exercises are included.

4,988 citations