scispace - formally typeset
Search or ask a question
Journal ArticleDOI

How Generic Scale Invariance Influences Quantum and Classical Phase Transitions

TL;DR: In this article, the authors discuss a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of order parameter only.
Abstract: This review discusses a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of the order parameter only. The soft modes in question are manifestations of generic scale invariance, i.e., the appearance of long-range order in whole regions in the phase diagram. The concept of generic scale invariance and its influence on critical behavior is explained using various examples, both classical and quantum mechanical. The peculiarities of quantum phase transitions are discussed, with emphasis on the fact that they are more susceptible to the effects of generic scale invariance than their classical counterparts. Explicit examples include the quantum ferromagnetic transition in metals, with or without quenched disorder; the metal-superconductor transition at zero temperature; and the quantum antiferromagnetic transition. Analogies with classical phase transitions in liquid crystals and classical fluids are pointed out, and a unifying conceptual framework is developed for all transitions that are influenced by generic scale invariance.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, it has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and a charged scalar.
Abstract: It has been shown that a gravitational dual to a superconductor can be obtained by coupling anti-de Sitter gravity to a Maxwell field and charged scalar We review our earlier analysis of this theory and extend it in two directions First, we consider all values for the charge of the scalar field Away from the large charge limit, backreaction on the spacetime metric is important While the qualitative behaviour of the dual superconductor is found to be similar for all charges, in the limit of arbitrarily small charge a new type of black hole instability is found We go on to add a perpendicular magnetic field B and obtain the London equation and magnetic penetration depth We show that these holographic superconductors are Type II, ie, starting in a normal phase at large B and low temperatures, they develop superconducting droplets as B is reduced

1,059 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticalities and the interplay between quantum criticalness and unconventional superconductivity.
Abstract: Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy-fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, that use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including the extent to which the quantum criticality in heavy-fermion metals goes beyond the standard theory of order-parameter fluctuations, the nature of the Kondo effect in the quantum-critical regime, the non-Fermi-liquid phenomena that accompany quantum criticality and the interplay between quantum criticality and unconventional superconductivity. At a zero-temperature phase transition from one ordered state to another, fluctuations between the two states lead to quantum critical behaviour that can lead to unexpected physics. Metals with ‘heavy’ electrons often harbour such weird states.

1,055 citations

Journal ArticleDOI
TL;DR: In this article, the authors review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with $d$- and $f$-electrons as well as magnetic semiconductors.
Abstract: We review studies of the electromagnetic response of various classes of correlated electron materials including transition metal oxides, organic and molecular conductors, intermetallic compounds with $d$- and $f$-electrons as well as magnetic semiconductors. Optical inquiry into correlations in all these diverse systems is enabled by experimental access to the fundamental characteristics of an ensemble of electrons including their self-energy and kinetic energy. Steady-state spectroscopy carried out over a broad range of frequencies from microwaves to UV light and fast optics time-resolved techniques provide complimentary prospectives on correlations. Because the theoretical understanding of strong correlations is still evolving, the review is focused on the analysis of the universal trends that are emerging out of a large body of experimental data augmented where possible with insights from numerical studies.

668 citations

Journal ArticleDOI
TL;DR: The experimental status of the study of the superconducting phases of $f$-electron compounds is reviewed in this paper, where superconductivity has been found at the border of magnetic order as well as deep within ferromagnetic and antiferromagnetically ordered states.
Abstract: Intermetallic compounds containing $f$-electron elements display a wealth of superconducting phases, which are prime candidates for unconventional pairing with complex order parameter symmetries. For instance, superconductivity has been found at the border of magnetic order as well as deep within ferromagnetically and antiferromagnetically ordered states, suggesting that magnetism may promote rather than destroy superconductivity. Superconducting phases near valence transitions or in the vicinity of magnetopolar order are candidates for new superconductive pairing interactions such as fluctuations of the conduction electron density or the crystal electric field, respectively. The experimental status of the study of the superconducting phases of $f$-electron compounds is reviewed.

529 citations

Journal ArticleDOI
TL;DR: The functional renormalization group as discussed by the authors is a flexible and unbiased tool for dealing with scale-dependent behavior of correlated fermion systems, such as Luttinger liquid behavior and the Kondo effect.
Abstract: Numerous correlated electron systems exhibit a strongly scale-dependent behavior. Upon lowering the energy scale, collective phenomena, bound states, and new effective degrees of freedom emerge. Typical examples include (i) competing magnetic, charge, and pairing instabilities in two-dimensional electron systems; (ii) the interplay of electronic excitations and order parameter fluctuations near thermal and quantum phase transitions in metals; and (iii) correlation effects such as Luttinger liquid behavior and the Kondo effect showing up in linear and nonequilibrium transport through quantum wires and quantum dots. The functional renormalization group is a flexible and unbiased tool for dealing with such scale-dependent behavior. Its starting point is an exact functional flow equation, which yields the gradual evolution from a microscopic model action to the final effective action as a function of a continuously decreasing energy scale. Expanding in powers of the fields one obtains an exact hierarchy of flow equations for vertex functions. Truncations of this hierarchy have led to powerful new approximation schemes. This review is a comprehensive introduction to the functional renormalization group method for interacting Fermi systems. A self-contained derivation of the exact flow equations is presented and frequently used truncation schemes are described. Reviewing selected applications it is shown how approximations based on the functional renormalization group can be fruitfully used to improve our understanding of correlated fermion systems.

511 citations

References
More filters
Journal ArticleDOI
21 Sep 2000-Nature
TL;DR: Evidence is found for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration, corresponding to a magnetic ordering temperature of zero, which implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.
Abstract: There are two main theoretical descriptions of antiferromagnets. The first arises from atomic physics, which predicts that atoms with unpaired electrons develop magnetic moments. In a solid, the coupling between moments on nearby ions then yields antiferromagnetic order at low temperatures1. The second description, based on the physics of electron fluids or ‘Fermi liquids’, states that Coulomb interactions can drive the fluid to adopt a more stable configuration by developing a spin density wave2,3. It is at present unknown which view is appropriate at a ‘quantum critical point’, where the antiferromagnetic transition temperature vanishes4,5,6,7. Here we report neutron scattering and bulk magnetometry measurements of the metal CeCu6-xAux, which allow us to discriminate between the two models. We find evidence for an atomically local contribution to the magnetic correlations which develops at the critical gold concentration (xc = 0.1 ), corresponding to a magnetic ordering temperature of zero. This contribution implies that a Fermi-liquid-destroying spin-localizing transition, unanticipated from the spin density wave description, coincides with the antiferromagnetic quantum critical point.

528 citations

Journal ArticleDOI
TL;DR: In this article, the critical theory of a number of zero-temperature phase transitions of quantum antiferromagnets and interacting boson systems in two dimensions is presented, and it is shown that these two states are separated by a second-order quantum phase transition.
Abstract: We present the critical theory of a number of zero-temperature phase transitions of quantum antiferromagnets and interacting boson systems in two dimensions. The most important example is the transition of the $S=1∕2$ square lattice antiferromagnet between the N\'eel state (which breaks spin rotation invariance) and the paramagnetic valence bond solid (which preserves spin rotation invariance but breaks lattice symmetries). We show that these two states are separated by a second-order quantum phase transition. This conflicts with Landau-Ginzburg-Wilson theory, which predicts that such states with distinct broken symmetries are generically separated either by a first-order transition, or by a phase with co-existing orders. The critical theory of the second-order transition is not expressed in terms of the order parameters characterizing either state, but involves fractionalized degrees of freedom and an emergent, topological, global conservation law. A closely related theory describes the superfluid-insulator transition of bosons at half filling on a square lattice, in which the insulator has a bond density wave order. Similar considerations are shown to apply to transitions of antiferromagnets between the valence bond solid and the ${Z}_{2}$ spin liquid: the critical theory has deconfined excitations interacting with an emergent $\mathrm{U}(1)$ gauge force. We comment on the broader implications of our results for the study of quantum criticality in correlated electron systems.

524 citations

Journal ArticleDOI
TL;DR: In this paper, Monte Carlo data and duality arguments are applied to a lattice model to show that a three-dimensional type-II superconductor should have a transition asymptotically equivalent to that of a superfluid with reversed temperature axis, and not a first-order transition.
Abstract: Monte Carlo data and duality arguments, applied to a lattice model, are presented which indicate that a three-dimensional type-II superconductor should have a transition asymptotically equivalent to that of a superfluid with reversed temperature axis, and not a first-order transition. Results may apply to the nematic---smectic-$A$ transition.

510 citations

Book
01 Jan 1995
TL;DR: In this paper, the authors focus on steady states "far from equilibrium" where such schemes break down, and propose a simple non-equilibrium model, referred to as the standard model.
Abstract: Publisher Summary This chapter discusses the systems coupled to two reservoirs of energy in such a way that there is a steady energy flow through the system. An example is a resistor in steady state, gaining energy from a battery and losing it to the atmosphere. Even for this restricted class there is no equivalent of Gibbs' framework and, typically, distributions cannot be expressed solely in terms of the internal energies of the system. Thus, in addition to the “technical difficulties” associated with computing averages in a many-body system, one must first solve the “more fundamental” problem of finding the stationary distribution. For systems, which are only weakly perturbed so that they remain “close to equilibrium,” much is known at the level of linear response. The chapter focuses on steady states “far from equilibrium” where such schemes break down. Against this backdrop of a vast theoretical terra incognita, a reasonable approach consists in investigating systems which, while retaining the essence of the difficulties of “far from equilibrium” states, are as simple as possible. In this very spirit, Lenz suggested the Ising model in an attempt to understand the nature of ferromagnetic phase transitions. This philosophy provides one of the main motivations behind the introduction of a simple non-equilibrium system, which is referred to as the “standard model.”

484 citations