scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models

TL;DR: The authors provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolinguistic task performance, and find that while the pretraining data size is an important factor in the downstream performance, a designated mon-olingual tokenizer plays an equally important role in downstream performance.
Abstract: In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model’s vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
21 Jun 2021
TL;DR: In this article, the authors present a new dataset called Case Holdings On Legal Decisions (CaseHOLD), which consists of over 53,000+ multiple choice questions to identify the relevant holding of a cited case.
Abstract: While self-supervised learning has made rapid advances in natural language processing, it remains unclear when researchers should engage in resource-intensive domain-specific pretraining (domain pretraining). The law, puzzlingly, has yielded few documented instances of substantial gains to domain pretraining in spite of the fact that legal language is widely seen to be unique. We hypothesize that these existing results stem from the fact that existing legal NLP tasks are too easy and fail to meet conditions for when domain pretraining can help. To address this, we first present CaseHOLD (Case Holdings On Legal Decisions), a new dataset comprised of over 53,000+ multiple choice questions to identify the relevant holding of a cited case. This dataset presents a fundamental task to lawyers and is both legally meaningful and difficult from an NLP perspective (F1 of 0.4 with a BiLSTM baseline). Second, we assess performance gains on CaseHOLD and existing legal NLP datasets. While a Transformer architecture (BERT) pretrained on a general corpus (Google Books and Wikipedia) improves performance, domain pretraining (on a corpus of ≈3.5M decisions across all courts in the U.S. that is larger than BERT's) with a custom legal vocabulary exhibits the most substantial performance gains with CaseHOLD (gain of 7.2% on F1, representing a 12% improvement on BERT) and consistent performance gains across two other legal tasks. Third, we show that domain pretraining may be warranted when the task exhibits sufficient similarity to the pretraining corpus: the level of performance increase in three legal tasks was directly tied to the domain specificity of the task. Our findings inform when researchers should engage in resource-intensive pretraining and show that Transformer-based architectures, too, learn embeddings suggestive of distinct legal language.

83 citations

Proceedings Article
26 Aug 2021
TL;DR: This paper propose a series of data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. But their methods rely on matrix factorization, which is not suitable for low resource languages.
Abstract: Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model’s embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT’s and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model.

25 citations

Proceedings Article
01 Nov 2021
TL;DR: The authors propose MAD-G (Multilingual ADapter Generation) which generates language adapters from language representations based on typological features. But this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets.
Abstract: Adapter modules have emerged as a general parameter-efficient means to specialize a pretrained encoder to new domains. Massively multilingual transformers (MMTs) have particularly benefited from additional training of language-specific adapters. However, this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets. In this work, we propose MAD-G (Multilingual ADapter Generation), which contextually generates language adapters from language representations based on typological features. In contrast to prior work, our time- and space-efficient MAD-G approach enables (1) sharing of linguistic knowledge across languages and (2) zero-shot inference by generating language adapters for unseen languages. We thoroughly evaluate MAD-G in zero-shot cross-lingual transfer on part-of-speech tagging, dependency parsing, and named entity recognition. While offering (1) improved fine-tuning efficiency (by a factor of around 50 in our experiments), (2) a smaller parameter budget, and (3) increased language coverage, MAD-G remains competitive with more expensive methods for language-specific adapter training across the board. Moreover, it offers substantial benefits for low-resource languages, particularly on the NER task in low-resource African languages. Finally, we demonstrate that MAD-G’s transfer performance can be further improved via: (i) multi-source training, i.e., by generating and combining adapters of multiple languages with available task-specific training data; and (ii) by further fine-tuning generated MAD-G adapters for languages with monolingual data.

10 citations

Posted Content
TL;DR: This article showed that efficient embedding based methods that rely solely on the respective datasets outperform computational expensive few-shot fine-tuning approaches, demonstrating that they are able to efficiently identify the best datasets for intermediate training.
Abstract: Intermediate task fine-tuning has been shown to culminate in large transfer gains across many NLP tasks. With an abundance of candidate datasets as well as pre-trained language models, it has become infeasible to run the cross-product of all combinations to find the best transfer setting. In this work we first establish that similar sequential fine-tuning gains can be achieved in adapter settings, and subsequently consolidate previously proposed methods that efficiently identify beneficial tasks for intermediate transfer learning. We experiment with a diverse set of 42 intermediate and 11 target English classification, multiple choice, question answering, and sequence tagging tasks. Our results show that efficient embedding based methods that rely solely on the respective datasets outperform computational expensive few-shot fine-tuning approaches. Our best methods achieve an average Regret@3 of less than 1% across all target tasks, demonstrating that we are able to efficiently identify the best datasets for intermediate training.

8 citations

Posted Content
TL;DR: The Korean Language Understanding Evaluation (KLUE) benchmark as mentioned in this paper is a collection of 8 Korean NLP tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking.
Abstract: We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at this https URL.

7 citations

References
More filters
Proceedings ArticleDOI
20 Apr 2020
TL;DR: In this article, the authors look at the relation between the types of languages, resources, and their representation in NLP conferences to understand the trajectory that different languages have followed over time.
Abstract: Language technologies contribute to promoting multilingualism and linguistic diversity around the world. However, only a very small number of the over 7000 languages of the world are represented in the rapidly evolving language technologies and applications. In this paper we look at the relation between the types of languages, resources, and their representation in NLP conferences to understand the trajectory that different languages have followed over time. Our quantitative investigation underlines the disparity between languages, especially in terms of their resources, and calls into question the “language agnostic” status of current models and systems. Through this paper, we attempt to convince the ACL community to prioritise the resolution of the predicaments highlighted here, so that no language is left behind.

193 citations

Journal ArticleDOI
TL;DR: TyDi QA as mentioned in this paper ) is a question answering dataset covering 11 typologically diverse languages with question answering in English, French, German, Dutch, Italian, Spanish, and Russian.
Abstract: Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA—a question answering dataset covering 11 typologically diverse languages with ...

189 citations

Proceedings ArticleDOI
01 Jul 2020
TL;DR: MLQA as discussed by the authors ) is a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area, which contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese.
Abstract: Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making building QA systems that work well in other languages challenging. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA has over 12K instances in English and 5K in each other language, with each instance parallel between 4 languages on average. We evaluate state-of-the-art cross-lingual models and machine-translation-based baselines on MLQA. In all cases, transfer results are shown to be significantly behind training-language performance.

187 citations

Proceedings ArticleDOI
30 Apr 2020
TL;DR: This paper proposed MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations, and introduced a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language.
Abstract: The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.

169 citations

Proceedings ArticleDOI
15 Dec 2020
TL;DR: A systematic empirical analysis across six typologically diverse languages and five different lexical tasks indicates patterns and best practices that hold universally, but also point to prominent variations across languages and tasks.
Abstract: The success of large pretrained language models (LMs) such as BERT and RoBERTa has sparked interest in probing their representations, in order to unveil what types of knowledge they implicitly capture. While prior research focused on morphosyntactic, semantic, and world knowledge, it remains unclear to which extent LMs also derive lexical type-level knowledge from words in context. In this work, we present a systematic empirical analysis across six typologically diverse languages and five different lexical tasks, addressing the following questions: 1) How do different lexical knowledge extraction strategies (monolingual versus multilingual source LM, out-of-context versus in-context encoding, inclusion of special tokens, and layer-wise averaging) impact performance? How consistent are the observed effects across tasks and languages? 2) Is lexical knowledge stored in few parameters, or is it scattered throughout the network? 3) How do these representations fare against traditional static word vectors in lexical tasks 4) Does the lexical information emerging from independently trained monolingual LMs display latent similarities? Our main results indicate patterns and best practices that hold universally, but also point to prominent variations across languages and tasks. Moreover, we validate the claim that lower Transformer layers carry more type-level lexical knowledge, but also show that this knowledge is distributed across multiple layers.

146 citations