scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

How iris recognition works

10 Dec 2002-Vol. 1, pp 715-739
TL;DR: Algorithms developed by the author for recognizing persons by their iris patterns have now been tested in many field and laboratory trials, producing no false matches in several million comparison tests.
Abstract: The principle that underlies the recognition of persons by their iris patterns is the failure of a test of statistical independence on texture phase structure as encoded by multiscale quadrature wavelets. The combinatorial complexity of this phase information across different persons spans about 249 degrees of freedom and generates a discrimination entropy of about 3.2 bits/mm/sup 2/ over the iris, enabling real-time decisions about personal identity with extremely high confidence. Algorithms first described by the author in 1993 have now been tested in several independent field trials and are becoming widely licensed. This presentation reviews how the algorithms work and presents the results of 9.1 million comparisons among different eye images acquired in trials in Britain, the USA, Korea, and Japan.

Content maybe subject to copyright    Report

Citations
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Proceedings Article
16 Feb 2007
TL;DR: Iris recognition as one of the important method of biometrics-based identification systems and iris recognition algorithm is described and experimental results show that the proposed method has an encouraging performance.
Abstract: In this paper, iris recognition as one of the important method of biometrics-based identification systems and iris recognition algorithm is described. As technology advances and information and intellectual properties are wanted by many unauthorized personnel. As a result many organizations have being searching ways for more secure authentication methods for the user access. In network security there is a vital emphasis on the automatic personal identification. Due to its inherent advantages biometric based verification especially iris identification is gaining a lot of attention. Iris recognition uses iris patterns for personnel identification. The system steps are capturing iris patterns; determining the location of iris boundaries; converting the iris boundary to the stretched polar coordinate system; extracting iris code based on texture analysis. The system has been implemented and tested using dataset of number of samples of iris data with different contrast quality. The developed algorithm performs satisfactorily on the images, provides 93% accuracy. Experimental results show that the proposed method has an encouraging performance.

1,389 citations


Cites background from "How iris recognition works"

  • ...Iris recognition is gaining popularity as a robust and reliable biometric technology [4]....

    [...]

Journal ArticleDOI
TL;DR: A recent large-scale subjective study of video quality on a collection of videos distorted by a variety of application-relevant processes results in a diverse independent public database of distorted videos and subjective scores that is freely available.
Abstract: We present the results of a recent large-scale subjective study of video quality on a collection of videos distorted by a variety of application-relevant processes. Methods to assess the visual quality of digital videos as perceived by human observers are becoming increasingly important, due to the large number of applications that target humans as the end users of video. Owing to the many approaches to video quality assessment (VQA) that are being developed, there is a need for a diverse independent public database of distorted videos and subjective scores that is freely available. The resulting Laboratory for Image and Video Engineering (LIVE) Video Quality Database contains 150 distorted videos (obtained from ten uncompressed reference videos of natural scenes) that were created using four different commonly encountered distortion types. Each video was assessed by 38 human subjects, and the difference mean opinion scores (DMOS) were recorded. We also evaluated the performance of several state-of-the-art, publicly available full-reference VQA algorithms on the new database. A statistical evaluation of the relative performance of these algorithms is also presented. The database has a dedicated web presence that will be maintained as long as it remains relevant and the data is available online.

1,172 citations


Cites background from "How iris recognition works"

  • ...motion analysis [48], computational stereo [49], and human biometrics [50], [51]....

    [...]

Journal ArticleDOI
01 Oct 2007
TL;DR: This paper presents more disciplined methods for detecting and faithfully modeling the iris inner and outer boundaries with active contours, leading to more flexible embedded coordinate systems and Fourier-based methods for solving problems in iris trigonometry and projective geometry.
Abstract: This paper presents the following four advances in iris recognition: 1) more disciplined methods for detecting and faithfully modeling the iris inner and outer boundaries with active contours, leading to more flexible embedded coordinate systems; 2) Fourier-based methods for solving problems in iris trigonometry and projective geometry, allowing off-axis gaze to be handled by detecting it and ldquorotatingrdquo the eye into orthographic perspective; 3) statistical inference methods for detecting and excluding eyelashes; and 4) exploration of score normalizations, depending on the amount of iris data that is available in images and the required scale of database search. Statistical results are presented based on 200 billion iris cross-comparisons that were generated from 632 500 irises in the United Arab Emirates database to analyze the normalization issues raised in different regions of receiver operating characteristic curves.

1,031 citations


Cites background or methods from "How iris recognition works"

  • ...Sections V and VI analyze alternative score normalization rules that are adapted for differently sized databases, using results from 200 billion iris cross-comparisons....

    [...]

  • ...A limitation of current iris recognition cameras is that they require an on-axis image of an eye, which is usually achieved through what may be called a “stop-and-stare” interface, in which a user must align her optical axis with the camera’s optical axis....

    [...]

  • ...A limitation of this method is that the affine transformation assumes that the iris is planar, whereas, in fact, it has some curvature....

    [...]

Journal ArticleDOI
TL;DR: This survey covers the historical development and current state of the art in image understanding for iris biometrics and suggests a short list of recommended readings for someone new to the field to quickly grasp the big picture of irisBiometrics.

933 citations


Cites background or methods from "How iris recognition works"

  • ...More detail on the focusing procedure is given in the appendix of [33]....

    [...]

  • ...Daugman suggested that image focus could be measured by calculating the total high frequency power in the 2D Fourier spectrum of the image [31,33]....

    [...]

  • ...The proposed method is compared to the authors’ own previous methods and to re-implementations of the methods of Daugman [33], Wildes [168], and Boles and Boashash [9], without implementation of eyelid and eyelash detection....

    [...]

  • ...” A 2004 paper [33] said that image acquisition should use nearinfrared illumination so that the illumination could be controlled, yet remain unintrusive to humans....

    [...]

  • ...In 2004, Daugman suggested that the iris should have a diameter of at least 140 pixels [33]....

    [...]

References
More filters
Book
01 Jan 1991
TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acknowledgments for the Second Edition. Acknowledgments for the First Edition. 1. Introduction and Preview. 1.1 Preview of the Book. 2. Entropy, Relative Entropy, and Mutual Information. 2.1 Entropy. 2.2 Joint Entropy and Conditional Entropy. 2.3 Relative Entropy and Mutual Information. 2.4 Relationship Between Entropy and Mutual Information. 2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information. 2.6 Jensen's Inequality and Its Consequences. 2.7 Log Sum Inequality and Its Applications. 2.8 Data-Processing Inequality. 2.9 Sufficient Statistics. 2.10 Fano's Inequality. Summary. Problems. Historical Notes. 3. Asymptotic Equipartition Property. 3.1 Asymptotic Equipartition Property Theorem. 3.2 Consequences of the AEP: Data Compression. 3.3 High-Probability Sets and the Typical Set. Summary. Problems. Historical Notes. 4. Entropy Rates of a Stochastic Process. 4.1 Markov Chains. 4.2 Entropy Rate. 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph. 4.4 Second Law of Thermodynamics. 4.5 Functions of Markov Chains. Summary. Problems. Historical Notes. 5. Data Compression. 5.1 Examples of Codes. 5.2 Kraft Inequality. 5.3 Optimal Codes. 5.4 Bounds on the Optimal Code Length. 5.5 Kraft Inequality for Uniquely Decodable Codes. 5.6 Huffman Codes. 5.7 Some Comments on Huffman Codes. 5.8 Optimality of Huffman Codes. 5.9 Shannon-Fano-Elias Coding. 5.10 Competitive Optimality of the Shannon Code. 5.11 Generation of Discrete Distributions from Fair Coins. Summary. Problems. Historical Notes. 6. Gambling and Data Compression. 6.1 The Horse Race. 6.2 Gambling and Side Information. 6.3 Dependent Horse Races and Entropy Rate. 6.4 The Entropy of English. 6.5 Data Compression and Gambling. 6.6 Gambling Estimate of the Entropy of English. Summary. Problems. Historical Notes. 7. Channel Capacity. 7.1 Examples of Channel Capacity. 7.2 Symmetric Channels. 7.3 Properties of Channel Capacity. 7.4 Preview of the Channel Coding Theorem. 7.5 Definitions. 7.6 Jointly Typical Sequences. 7.7 Channel Coding Theorem. 7.8 Zero-Error Codes. 7.9 Fano's Inequality and the Converse to the Coding Theorem. 7.10 Equality in the Converse to the Channel Coding Theorem. 7.11 Hamming Codes. 7.12 Feedback Capacity. 7.13 Source-Channel Separation Theorem. Summary. Problems. Historical Notes. 8. Differential Entropy. 8.1 Definitions. 8.2 AEP for Continuous Random Variables. 8.3 Relation of Differential Entropy to Discrete Entropy. 8.4 Joint and Conditional Differential Entropy. 8.5 Relative Entropy and Mutual Information. 8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information. Summary. Problems. Historical Notes. 9. Gaussian Channel. 9.1 Gaussian Channel: Definitions. 9.2 Converse to the Coding Theorem for Gaussian Channels. 9.3 Bandlimited Channels. 9.4 Parallel Gaussian Channels. 9.5 Channels with Colored Gaussian Noise. 9.6 Gaussian Channels with Feedback. Summary. Problems. Historical Notes. 10. Rate Distortion Theory. 10.1 Quantization. 10.2 Definitions. 10.3 Calculation of the Rate Distortion Function. 10.4 Converse to the Rate Distortion Theorem. 10.5 Achievability of the Rate Distortion Function. 10.6 Strongly Typical Sequences and Rate Distortion. 10.7 Characterization of the Rate Distortion Function. 10.8 Computation of Channel Capacity and the Rate Distortion Function. Summary. Problems. Historical Notes. 11. Information Theory and Statistics. 11.1 Method of Types. 11.2 Law of Large Numbers. 11.3 Universal Source Coding. 11.4 Large Deviation Theory. 11.5 Examples of Sanov's Theorem. 11.6 Conditional Limit Theorem. 11.7 Hypothesis Testing. 11.8 Chernoff-Stein Lemma. 11.9 Chernoff Information. 11.10 Fisher Information and the Cram-er-Rao Inequality. Summary. Problems. Historical Notes. 12. Maximum Entropy. 12.1 Maximum Entropy Distributions. 12.2 Examples. 12.3 Anomalous Maximum Entropy Problem. 12.4 Spectrum Estimation. 12.5 Entropy Rates of a Gaussian Process. 12.6 Burg's Maximum Entropy Theorem. Summary. Problems. Historical Notes. 13. Universal Source Coding. 13.1 Universal Codes and Channel Capacity. 13.2 Universal Coding for Binary Sequences. 13.3 Arithmetic Coding. 13.4 Lempel-Ziv Coding. 13.5 Optimality of Lempel-Ziv Algorithms. Compression. Summary. Problems. Historical Notes. 14. Kolmogorov Complexity. 14.1 Models of Computation. 14.2 Kolmogorov Complexity: Definitions and Examples. 14.3 Kolmogorov Complexity and Entropy. 14.4 Kolmogorov Complexity of Integers. 14.5 Algorithmically Random and Incompressible Sequences. 14.6 Universal Probability. 14.7 Kolmogorov complexity. 14.9 Universal Gambling. 14.10 Occam's Razor. 14.11 Kolmogorov Complexity and Universal Probability. 14.12 Kolmogorov Sufficient Statistic. 14.13 Minimum Description Length Principle. Summary. Problems. Historical Notes. 15. Network Information Theory. 15.1 Gaussian Multiple-User Channels. 15.2 Jointly Typical Sequences. 15.3 Multiple-Access Channel. 15.4 Encoding of Correlated Sources. 15.5 Duality Between Slepian-Wolf Encoding and Multiple-Access Channels. 15.6 Broadcast Channel. 15.7 Relay Channel. 15.8 Source Coding with Side Information. 15.9 Rate Distortion with Side Information. 15.10 General Multiterminal Networks. Summary. Problems. Historical Notes. 16. Information Theory and Portfolio Theory. 16.1 The Stock Market: Some Definitions. 16.2 Kuhn-Tucker Characterization of the Log-Optimal Portfolio. 16.3 Asymptotic Optimality of the Log-Optimal Portfolio. 16.4 Side Information and the Growth Rate. 16.5 Investment in Stationary Markets. 16.6 Competitive Optimality of the Log-Optimal Portfolio. 16.7 Universal Portfolios. 16.8 Shannon-McMillan-Breiman Theorem (General AEP). Summary. Problems. Historical Notes. 17. Inequalities in Information Theory. 17.1 Basic Inequalities of Information Theory. 17.2 Differential Entropy. 17.3 Bounds on Entropy and Relative Entropy. 17.4 Inequalities for Types. 17.5 Combinatorial Bounds on Entropy. 17.6 Entropy Rates of Subsets. 17.7 Entropy and Fisher Information. 17.8 Entropy Power Inequality and Brunn-Minkowski Inequality. 17.9 Inequalities for Determinants. 17.10 Inequalities for Ratios of Determinants. Summary. Problems. Historical Notes. Bibliography. List of Symbols. Index.

45,034 citations


"How iris recognition works" refers background in this paper

  • ...By contrast, images of different faces look increasingly alike when poorly resolved and can be confused with each other by appearance-based face recognition algorithms....

    [...]

Journal ArticleDOI
TL;DR: The algorithm can be used as a building block for solving other distributed graph problems, and can be slightly modified to run on a strongly-connected diagraph for generating the existent Euler trail or to report that no Euler trails exist.

13,828 citations

Journal ArticleDOI
TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.
Abstract: We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.

11,674 citations


"How iris recognition works" refers background in this paper

  • ...For example, in face recognition, difficulties arise from the fact that the face is a changeable social organ displaying a variety of expressions, as well as being an active three-dimensional (3-...

    [...]

Journal ArticleDOI
TL;DR: Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems.
Abstract: Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from 1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.

4,816 citations

Journal ArticleDOI
TL;DR: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence, which implies a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates.
Abstract: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person's face is the detailed texture of each eye's iris. The visible texture of a person's iris in a real-time video image is encoded into a compact sequence of multi-scale quadrature 2-D Gabor wavelet coefficients, whose most-significant bits comprise a 256-byte "iris code". Statistical decision theory generates identification decisions from Exclusive-OR comparisons of complete iris codes at the rate of 4000 per second, including calculation of decision confidence levels. The distributions observed empirically in such comparisons imply a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates. In the typical recognition case, given the mean observed degree of iris code agreement, the decision confidence levels correspond formally to a conditional false accept probability of one in about 10/sup 31/. >

3,399 citations


"How iris recognition works" refers methods in this paper

  • ...Only phase information is used for recognizing irises because amplitude information is not very discriminating, and it depends upon extraneous factors such as imaging contrast, illumination, and camera gain....

    [...]

  • ...The author’s algorithms [8]–[10] for encoding and recognizing iris patterns have been the executable software used in all iris recognition systems so far deployed commercially or in tests, including those by British Telecom, Sandia Labs, U.K. National Physical Lab, Panasonic, LG, Oki, EyeTicket, Sensar, Sarnoff, IBM, SchipholGroup, Siemens, Sagem, IriScan, and Iridian....

    [...]

  • ...…have been the executable software used in all iris recognition systems so far deployed commercially or in tests, including those by British Telecom, Sandia Labs, U.K. National Physical Lab, Panasonic, LG, Oki, EyeTicket, Sensar, Sarnoff, IBM, SchipholGroup, Siemens, Sagem, IriScan, and Iridian....

    [...]