scispace - formally typeset
Search or ask a question
Journal ArticleDOI

How long to oceanic tracer and proxy equilibrium

01 Apr 2008-Quaternary Science Reviews (Pergamon)-Vol. 27, Iss: 7, pp 637-651
TL;DR: In this paper, a global ocean circulation model, forced to least-square consistency with modern data, is used to find lower bounds for the time taken by surface-injected passive tracers to reach equilibrium.
About: This article is published in Quaternary Science Reviews.The article was published on 2008-04-01. It has received 90 citations till now. The article focuses on the topics: Thermohaline circulation & North Atlantic Deep Water.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis was studied, and it was shown that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so.
Abstract: Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical “water-hosing” experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.

17 citations


Cites background or result from "How long to oceanic tracer and prox..."

  • ...This suggests that the full oceanic adjustment requires many millennia to reach full equilibrium (in agreement with the conclusions of Wunsch and Heimbach 2008; Siberlin and Wunsch 2011)....

    [...]

  • ...These findings, consistent with those of Wunsch and Heimbach (2008) and Siberlin and Wunsch (2011) who looked at the tracer propagation timescales, has important implication for the interpretation of paleoclimate proxy data, as relevant to both cold and warm climate states....

    [...]

01 Jan 2011
TL;DR: In this article, a computationally efficient state transition matrix method is demonstrated and used to compute successive states of passive tracer concentrations in the global ocean, with the latter depending directly upon pulse duration.
Abstract: Quantifying time-responses of the ocean to tracer input is important to the interpretation of paleodata from sed- iment cores - because surface-injected tracers do not instan- taneously spread throughout the ocean. To obtain insights into the time response, a computationally efficient state- transition matrix method is demonstrated and used to com- pute successive states of passive tracer concentrations in the global ocean. Times to equilibrium exceed a thousand years for regions of the global ocean outside of the injection and convective areas and concentration gradients give time-lags from hundreds to thousands of years between the Atlantic and Pacific abyss, depending on the injection region and the nature of the boundary conditions employed. Equilibrium times can be much longer than radiocarbon ages - both be- cause the latter are strongly biased towards the youngest frac- tion of fluid captured in a sample, and because they represent distinct physical properties. Use of different boundary con- ditions - concentration, or flux - produces varying response times, with the latter depending directly upon pulse duration. With pulses, the sometimes very different transient approach to equilibrium in various parts of the ocean generates event identification problems.

16 citations

Journal ArticleDOI
TL;DR: In this paper, a computationally efficient state-transition matrix method is demonstrated and used to compute successive states of passive tracer concentrations in the global ocean, with the latter depending directly upon pulse duration.
Abstract: . Quantifying time-responses of the ocean to tracer input is important to the interpretation of paleodata from sediment cores – because surface-injected tracers do not instantaneously spread throughout the ocean. To obtain insights into the time response, a computationally efficient state-transition matrix method is demonstrated and used to compute successive states of passive tracer concentrations in the global ocean. Times to equilibrium exceed a thousand years for regions of the global ocean outside of the injection and convective areas and concentration gradients give time-lags from hundreds to thousands of years between the Atlantic and Pacific abyss, depending on the injection region and the nature of the boundary conditions employed. Equilibrium times can be much longer than radiocarbon ages – both because the latter are strongly biased towards the youngest fraction of fluid captured in a sample, and because they represent distinct physical properties. Use of different boundary conditions – concentration, or flux – produces varying response times, with the latter depending directly upon pulse duration. With pulses, the sometimes very different transient approach to equilibrium in various parts of the ocean generates event identification problems.

15 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Gravity Recovery and Climate Experiment (GRACE) gravity mission to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific.
Abstract: Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003–2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.

15 citations


Cites background from "How long to oceanic tracer and prox..."

  • ...East of New Zealand both AABW and CDW leave the ACC and enter the abyssal Pacific Ocean [Reid, 1997; Macdonald et al., 2009], where residence time can be over a thousand years [Wunsch and Heimbach, 2008]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an empirical statistical model of Lagrangian tracers at a constant depth level is developed, which follows the transfer operator based on 10-day deep displacements of Argo floats at ~1000 m depth.
Abstract: The evolution and dispersion of intermediate water masses in the ocean interior is studied. To this purpose, an empirical statistical model of Lagrangian tracers at a constant depth level is developed. The model follows the transfer operator based on 10-day deep displacements of Argo floats at ~1000 m depth. An asymptotic analysis of the model shows the existence of 10 principal stationary points (the 10 locations attract asymptotically 97% of the tracers). It takes ~1000 years to reach this asymptotic regime relevant for estimating the stationary points. For Lagrangian floats, the concept of attractor needs to be generalized in a statistical sense (versus deterministic), except for a few places in the ocean. In this new framework, a tracer has a likelihood to reach the stationary points, rather than a certainty to reach a single stationary point. The empirical statistical model is used to describe the fate of three intermediate water masses: North Pacific Intermediate Water (NPIW), Mediterranean ...

12 citations


Cites result from "How long to oceanic tracer and prox..."

  • ...This result is consistent with numerical model results (Wunsch and Heimbach 2008; Siberlin and Wunsch 2011; Sévellec and Fedorov 2016)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.
Abstract: The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided b...

28,145 citations

Book
31 Dec 1959
TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Abstract: This classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems.

21,807 citations

Journal ArticleDOI
TL;DR: In this article, a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics, including a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized.
Abstract: If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind-driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double-diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long-Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.

3,756 citations

Journal ArticleDOI
TL;DR: In this paper, a subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces is proposed for use in non-eddy-resolving ocean circulation models.
Abstract: A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces is proposed for use in non-eddy-resolving ocean circulation models. The mixing is applied in isopycnal coordinates to isopycnal layer thickness, or inverse density gradient, as well as to passive scalars, temperature and salinity. The transformation of these mixing forms to physical coordinates is also presented.

3,107 citations


"How long to oceanic tracer and prox..." refers methods in this paper

  • ...The underlying numerical code is that of Marshall et al. (1997) as modified by the ECCO projects in the interim, and includes the Large et al. (1994) mixed layer formulation, and the Gent and McWilliams (1990) eddy-flux parameterization....

    [...]

Journal ArticleDOI
TL;DR: A preconditioner is used which, in the hydrostatic limit, is an exact integral of the Poisson operator and so leads to a single algorithm that seamlessly moves from nonhydrostatic to hydrostatic limits, competitive with the fastest ocean climate models in use today.
Abstract: The numerical implementation of an ocean model based on the incompressible Navier Stokes equations which is designed for studies of the ocean circulation on horizontal scales less than the depth of the ocean right up to global scale is described. A "pressure correction" method is used which is solved as a Poisson equation for the pressure field with Neumann boundary conditions in a geometry as complicated as that of the ocean basins. A major objective of the study is to make this inversion, and hence nonhydrostatic ocean modeling, efficient on parallel computers. The pressure field is separated into surface, hydrostatic, and nonhydrostatic components. First, as in hydrostatic models, a two-dimensional problem is inverted for the surface pressure which is then made use of in the three-dimensional inversion for the nonhydrostatic pressure. Preconditioned conjugate-gradient iteration is used to invert symmetric elliptic operators in both two and three dimensions. Physically motivated preconditioners are designed which are efficient at reducing computation and minimizing communication between processors. Our method exploits the fact that as the horizontal scale of the motion becomes very much larger than the vertical scale, the motion becomes more and more hydrostatic and the three- dimensional Poisson operator becomes increasingly anisotropic and dominated by the vertical axis. Accordingly, a preconditioner is used which, in the hydrostatic limit, is an exact integral of the Poisson operator and so leads to a single algorithm that seamlessly moves from nonhydrostatic to hydrostatic limits. Thus in the hydrostatic limit the model is "fast," competitive with the fastest ocean climate models in use today based on the hydrostatic primitive equations. But as the resolution is increased, the model dynamics asymptote smoothly to the Navier Stokes equations and so can be used to address small- scale processes. A "finite-volume" approach is employed to discretize the model in space in which property fluxes are defined normal to faces that delineate the volumes. The method makes possible a novel treatment of the boundary in which cells abutting the bottom or coast may take on irregular shapes and be "shaved" to fit the boundary. The algorithm can conveniently exploit massively parallel computers and suggests a domain decomposition which allocates vertical columns of ocean to each processing unit. The resulting model, which can handle arbitrarily complex geometry, is efficient and scalable and has been mapped on to massively parallel multiprocessors such as the Connection Machine (CM5) using data-parallel FORTRAN and the Massachusetts Institute of Technology data-flow machine MONSOON using the implicitly parallel language Id. Details of the numerical implementation of a model which has been designed for the study of dynamical processes in the ocean from the convective, through the geostrophic eddy, up to global scale are set out. The "kernel" algorithm solves the incompressible Navier Stokes equations on the sphere, in a geometry as complicated as that of the ocean basins with ir- regular coastlines and islands. (Here we use the term "Navier Stokes" to signify that the full nonhydrostatic equations are being employed; it does not imply a particular constitutive relation. The relevant equations for modeling the full complex- ity of the ocean include, as here, active tracers such as tem- perature and salt.) It builds on ideas developed in the compu- tational fluid community. The numerical challenge is to ensure that the evolving velocity field remains nondivergent. Most

2,315 citations


"How long to oceanic tracer and prox..." refers methods in this paper

  • ...The underlying numerical code is that of Marshall et al. (1997) as modified by the ECCO projects in the interim, and includes the Large et al. (1994) mixed layer formulation, and the Gent and McWilliams (1990) eddy-flux parameterization....

    [...]