scispace - formally typeset
Search or ask a question
Journal ArticleDOI

How to Measure Squeezing and Entanglement of Gaussian States without Homodyning

06 Aug 2004-Physical Review Letters (American Institute of Physics)-Vol. 93, Iss: 6, pp 063601-063601
TL;DR: This work proposes a scheme for measuring the squeezing, purity, and entanglement of Gaussian states of light that does not require homodyne detection and needs only beam splitters and single-photon detectors.
Abstract: We propose a scheme for measuring the squeezing, purity, and entanglement of Gaussian states of light that does not require homodyne detection. The suggested setup needs only beam splitters and single-photon detectors. Two-mode entanglement can be detected from coincidences between photodetectors placed on the two beams.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a scheme for generating the superpositions and the entanglement between the mesoscopic high-order squeezed vacuum states by considering the multi-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field is proposed.
Abstract: We propose a scheme for generating the superpositions and the entanglement between the mesoscopic high-order squeezed vacuum states by considering the multi-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. In terms of specific choices of the cavity detuning, many multiparty entangled states between the atoms and the mesoscopic high-order squeezed vacuum states and among the high-order squeezed vacuum states of the cavity modes can be generated, including the macroscopic “Schrodinger cats” of the mesoscopic high-order squeezed vacuum states, the entanged states of the macroscopic “Schrodinger cats”, and so on. Our scheme is achievable within the current techniques in the cavity QED.

1 citations

Journal ArticleDOI
TL;DR: In this article, a photon-added squeezing-enhanced vacuum state (PASEVS) is introduced and the nonclassical effects in the PASEVS, such as Q-function, photon-number distribution and second-order function, etc.
Abstract: Photon-added squeezing-enhanced vacuum state (PASEVS) is introduced. We analyze the nonclassical effects in the PASEVS, such as Q-function, photon-number distribution and second-order function, etc. For the PASEVS, it shows that the degree of the squeezing increases with the parameter r and reaches to the maximum degree of squeezing −1 quickly. The Wigner functions of the PASEVS are also discussed. Furthermore, the production of the PASEVS is also given experimentally.

1 citations

Journal ArticleDOI
TL;DR: In this article, the dynamics of the entanglement for a solid polariton system is investigated and its time-dependent characteristic function in the Wigner representation for the system is obtained analytically.
Abstract: The dynamics of the entanglement for a solid polariton system is investigated. The polariton system is a photon-phonon complex and its time-dependent characteristic function in the Wigner representation for the system is obtained analytically. It is found that when the photon field is initially prepared in the squeezed vacuum state, and the phonon in the thermal state, the polariton system can evolve into a two-mode Gaussian mixed state. The entanglement between photon and phonon turns out to be apparently dependent on the squeezing parameter and exhibits a critical behavior with respect to the temperature.

1 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of the effects of phase fluctuation and dephasing on the dynamics of the entanglement generated from a coherently pumped correlated emission laser is presented.
Journal ArticleDOI
TL;DR: In this paper, the mesoscopic entanglement between mesoscopic squeezed vacuum states and Fock states is generated by considering both the two-photon interaction of N two-level atoms in cavities with high quality factor assisted by a strong driving field.
Abstract: A scheme is proposed for generating the mesoscopic entanglement between the mesoscopic squeezed vacuum states and Fock states {|0〉,|2〉} by considering both the two-photon interaction of N two-level atoms in cavities with high quality factor assisted by a strong driving field. Moreover, we derive the dissipative interaction models for two-photon interaction. The corresponding analytical expressions of the fidelities can be given. Our scheme can be realized in the current techniques on the cavity QED.
References
More filters
Journal ArticleDOI
TL;DR: A measure of entanglement that can be computed effectively for any mixed state of an arbitrary bipartite system is presented and it is shown that it does not increase under local manipulations of the system.
Abstract: We present a measure of entanglement that can be computed effectively for any mixed state of an arbitrary bipartite system. We show that it does not increase under local manipulations of the system, and use it to obtain a bound on the teleportation capacity and on the distillable entanglement of mixed states.

3,889 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the Deutsch-Jozsa algorithm for continuous variables, and a deterministic version of it is used for quantum information processing with continuous variables.
Abstract: Preface. About the Editors. Part I: Quantum Computing. 1. Quantum computing with qubits S.L. Braunstein, A.K. Pati. 2. Quantum computation over continuous variables S. Lloyd, S.L. Braunstein. 3. Error correction for continuous quantum variables S.L. Braunstein. 4. Deutsch-Jozsa algorithm for continuous variables A.K. Pati, S.L. Braunstein. 5. Hybrid quantum computing S. Lloyd. 6. Efficient classical simulation of continuous variable quantum information processes S.D. Bartlett, B.C. Sanders, S.L. Braunstein, K. Nemoto. Part II: Quantum Entanglement. 7. Introduction to entanglement-based protocols S.L. Braunstein, A.K. Pati. 8. Teleportation of continuous uantum variables S.L. Braunstein, H.J. Kimble. 9. Experimental realization of continuous variable teleportation A. Furusawa, H.J. Kimble. 10. Dense coding for continuous variables S.L. Braunstein, H.J. Kimble. 11. Multipartite Greenberger-Horne-Zeilinger paradoxes for continuous variables S. Massar, S. Pironio. 12. Multipartite entanglement for continuous variables P. van Loock, S.L. Braunstein. 13. Inseparability criterion for continuous variable systems Lu-Ming Duan, G. Giedke, J.I. Cirac, P. Zoller. 14. Separability criterion for Gaussian states R. Simon. 15. Distillability and entanglement purification for Gaussian states G. Giedke, Lu-Ming Duan, J.I. Cirac, P. Zoller. 16. Entanglement purification via entanglement swapping S. Parke, S. Bose, M.B. Plenio. 17. Bound entanglement for continuous variables is a rare phenomenon P. Horodecki, J.I. Cirac, M. Lewenstein. Part III: Continuous Variable Optical-Atomic Interfacing. 18. Atomic continuous variable processing and light-atoms quantum interface A. Kuzmich, E.S. Polzik. Part IV: Limits on Quantum Information and Cryptography. 19. Limitations on discrete quantum information and cryptography S.L. Braunstein, A.K. Pati. 20. Quantum cloning with continuous variables N.J. Cerf. 21. Quantum key distribution with continuous variables in optics T.C. Ralph. 22. Secure quantum key distribution using squeezed states D. Gottesman, J. Preskill. 23. Experimental demonstration of dense coding and quantum cryptography with continuous variables Kunchi Peng, Qing Pan, Jing Zhang, Changde Xie. 24. Quantum solitons in optical fibres: basic requisites for experimental quantum communication G. Leuchs, Ch. Silberhorn, E. Konig, P.K. Lam, A. Sizmann, N. Korolkova. Index.

2,940 citations

Journal ArticleDOI
TL;DR: The Peres-Horodecki criterion of positivity under partial transpose is studied in the context of separability of bipartite continuous variable states and turns out to be a necessary and sufficient condition for separability.
Abstract: The Peres-Horodecki criterion of positivity under partial transpose is studied in the context of separability of bipartite continuous variable states. The partial transpose operation admits, in the continuous case, a geometric interpretation as mirror reflection in phase space. This recognition leads to uncertainty principles, stronger than the traditional ones, to be obeyed by all separable states. For all bipartite Gaussian states, the Peres-Horodecki criterion turns out to be a necessary and sufficient condition for separability.

1,796 citations

Journal ArticleDOI
TL;DR: An inseparability criterion based on the total variance of a pair of Einstein-Podolsky-Rosen type operators is proposed for continuous variable systems and turns out to be a necessary and sufficient condition for inseparability.
Abstract: As with discrete systems, quantum entanglement also plays the basic role in quantum information protocols with continuous variables. A problem of great importance is then to check whether a continuous variable state, generally mixed, is entangled (inseparable). For discrete systems, there is the Peres-Horodecki inseparability criterion [1,2], based on the negativity of the partial transpose of the composite density operator. This negativity provides a necessary and sufficient condition for inseparability of 2 × 2 or 2 × 3 —dimensional systems. In this section, we will describe an entirely different inseparability criterion for continuous variable states, which was first proposed in Ref. [3]. The Peres-Horodecki criterion was also successfully extended to the continuous variable systems shortly afterwards, which will be described in the next section by Simon.

1,670 citations

Book
13 Mar 1998
TL;DR: In this paper, the authors present a survey of classical models of light experiments with Photons, as well as non-demolition experiments with light and non-quantum noise.
Abstract: Classical Models of Light Experiments with Photons Quantum Models of Light Basic Optical Components Photo-currents: Generation and Detection The Laser Quantum Noise: Basic Measurements Sub-Poissonian Light Squeezing Experiments Quantum Non-demolition Experiments Applications of Quantum Optics Summary and Outlook Appendices Index.

817 citations